Tue, 29 Nov 2016
14:30
L3

Random plane waves and other classes of random functions

Dmitry Belyaev
(Mathematical Institute)
Abstract


There are several classes of random function that appear naturally in mathematical physics, probability, number theory, and other areas of mathematics. I will give a brief overview of some of these random functions and explain what they are and why they are important. Finally, I will explain how I use chebfun to study these functions.
 

Vitamin D receptor expression in human bone tissue and dose-dependent activation in resorbing osteoclasts
Zarei, A Morovat, A Javaid, K Brown, C Bone Research volume 4 (01 Jan 2016)
Thu, 09 Mar 2017

16:00 - 17:00
L3

Octupolar Order Tensors

Epifanio Virga
(University of Pavia)
Abstract

In Soft Matter, octupolar order is not just an exotic mathematical curio. Liquid crystals have already provided a noticeable case of soft ordered materials for which a (second-rank) quadrupolar order tensor may not suffice to capture the complexity of the condensed phases they can exhibit. This lecture will discuss the properties of a third-rank order tensor capable of describing these more complex phases. In particular, it will be shown that octupolar order tensors come in two separate, equally abundant variants. This fact, which will be given a simple geometric interpretation, anticipates the possible existence of two distinct octupolar sub-phases. 

Mon, 07 Nov 2016

11:00 - 12:00
C4

On the Ihara/Oda-Matsumoto conjecture and its variants

Adam Topaz
(Oxford)
Abstract

Following the spirit of Grothendieck’s Esquisse d’un Programme, the Ihara/Oda-Matsumoto conjecture predicted a combinatorial description of the absolute Galois group of Q based on its action on geometric fundamental groups of varieties. This conjecture was resolved in the 90’s by Pop using anabelian techniques. In this talk, I will discuss some satronger variants of this conjecture, focusing on the more recent solutions of its pro-ell and mod-ell two-step nilpotent variants.
 

Fri, 04 Nov 2016
14:15
C3

Two phase flow in volcanic conduits

Andrew Fowler
(Universities of Oxford and Limerick)
Abstract

Strombolian volcanoes are thought to maintain their semi-permanent eruptive style by means of counter-current two-phase convective flow in the volcanic conduit leading from the magma chamber, driven by the buoyancy provided by exsolution of volatiles such as water vapour and carbon dioxide in the upwelling magma, due to pressure release. A model of bubbly two-phase flow is presented to describe this, but it is found that the solution breaks down before the vent at the surface is reached. We propose that the mathematical breakdown of the solution is associated with the physical breakdown of the two-phase flow regime from a bubbly flow to a churn-turbulent flow. We provide a second two-phase flow model to describe this regime, and we show that the solution can be realistically continued to the vent. The model is also in keeping with observations of eruptive style.

Fri, 11 Nov 2016
10:00
N3.12

Realising the projective representations of the symmetric group using Dirac cohomology.

Kieran Calvert
(University of Oxford)
Abstract

Firstly I will outline Dirac cohomology for graded Hecke algebras and the branching rules for the projective representations of $S_n$. Combining these notions with the Jucys-Murphy elements for $\tilde{S}_n$, that is the double cover of the symmetric group, I will go through a method to completely describe the spectrum data for the Jucys-Murphy elements for $\tilde{S}_n$. If time allows I will also explain how this spectrum data gives rise to a a concrete description for the matrices of the action of $\tilde{S}_n$.

Wed, 23 Nov 2016
11:30
N3.12

tba

Phillip Dittmann
(University of Oxford)
Wed, 16 Nov 2016
11:30
N3.12

Group theory in chemistry

Kieran Calvert
(University of Oxford)
Abstract

I will try to give a brief description of the use of group theory and character theory in chemistry, specifically vibrational spectroscopy. Defining the group associated to a molecule, how one would construct a representation corresponding to such a molecule and the character table associated to this. Then, time permitting, I will go in to the deconstruction of the data from spectroscopy; finding such a group and hence molecule structure. 

Subscribe to