Tue, 07 Feb 2017

12:00 - 13:00
L4

Geometric scattering for linear quantum fields

Dr Michal Wrochna
(Grenoble)
Abstract

An essential ingredient of AdS/CFT, dS/CFT and other dualities is a geometric notion of scattering that refers to asymptotics rather than, say, infinite time limits. Though one expects non-perturbative versions to exist in the case of linear quantum fields (and non-linear classical fields), this has been rigorously implemented in Lorentzian settings only relatively recently. The goal of this talk will be to give an overview in different geometrical setups, including asymptotically Minkowski, de Sitter and Anti-de Sitter spacetimes. In particular I will discuss recent results on classical scattering and particle interpretations, compare them with the setup of conformal scattering and explain how they can be used to construct "in-out" Feynman propagators (based on joint works with Christian Gérard and András Vasy).

Tue, 17 Jan 2017

12:00 - 13:15
L4

Polylogarithmic Polygon Origami

Lance Dixon
(Stanford)
Abstract

Amplitudes in planar N=4 SYM are dual to light-like polygonal Wilson-loop expectation values. In many cases their perturbative expansion can be expressed in terms of multiple polylogarithms which also obey certain single-valuedness conditions or branch cut restrictions. The rigidity of this function space, together with a few other conditions, allows one to construct the six-point amplitude -- or hexagonal Wilson loop -- through at least five loops, and the seven-point amplitude through 3.5 loops. Then one can "fold" the polygonal Wilson loops into multiple degenerate configurations, expressing the limiting behavior in terms of simpler function spaces, and learning in the process about how amplitudes factorize.
 

Mon, 24 Oct 2016

14:15 - 15:15
L4

Automorphic gluing in geometric Langlands via sheaves of categories with Hochschild cochains action

Dario Beraldo
(Oxford)
Abstract

I will define the notion of "sheaf of categories with a local action of Hochschild cochains" over a stack. (This notion is analogous to D-modules, in the same way as the notion of "sheaf of categories" is analogous to quasi-coherent sheaves.) I will prove that both categories appearing in geometric Langlands carry this structure over the stack of de Rham {\check{G}}-local systems. Using this, I will explain how to glue D-mod(Bun_G) out of *tempered* D-modules associated to smaller Levi subgroups of G.

 

Fri, 02 Dec 2016

16:00 - 17:00
L1

Topologically Ordered Matter and Why You Should be Interested

Steve Simon
(University of Oxford)
Abstract

In two dimensional topological phases of matter, processes depend on gross topology rather than detailed geometry. Thinking in 2+1 dimensions, the space-time histories of particles can be interpreted as knots or links, and the amplitude for certain processes becomes a topological invariant of that link. While sounding rather exotic, we believe that such phases of matter not only exist, but have actually been observed (or could be soon observed) in experiments. These phases of matter could provide a uniquely practical route to building a quantum computer. Experimental systems of relevance include Fractional Quantum Hall Effects, Exotic superconductors such as Strontium Ruthenate, Superfluid Helium, Semiconductor-Superconductor-Spin-Orbit systems including Quantum Wires. The physics of these systems, and how they might be used for quantum computation will be discussed.

Tue, 18 Oct 2016
15:45
L4

Separating invariants and local cohomology

Emilie DuFresne
(Oxford)
Abstract

The study of separating invariants is a new trend in Invariant Theory and a return to its roots: invariants as a classification tool. For a finite group acting linearly on a vector space, a separating set is simply a set of invariants whose elements separate the orbits o the action. Such a set need not generate the ring of invariants. In this talk, we give lower bounds on the size of separating sets based on the geometry of the action. These results are obtained via the study of the local cohomology with support at an arrangement of linear subspaces naturally arising from the action.

(Joint with Jack Jeffries)

Fri, 28 Oct 2016
09:00
N3.12

TBA

Lena Gal
((Oxford University))
Subscribe to