Fri, 02 Dec 2016

10:00 - 11:00
L4

Modelling Aspects of Hotel Recommendation Systems

Christian Sommeregger & Wen Wong
(hotels.com (Expedia))
Abstract

Hotels.com is one of the world’s leading accommodation booking websites featuring an inventory of around 300.000 hotels and 100s of millions of users. A crucial part of our business is to act as an agent between these two sides of the market, thus reducing search costs and information asymmetries to enable our visitors to find the right hotel in the most efficient way.

From this point of view selling hotels is one large recommendation challenge: given a set of items and a set of observed choices/ratings, identify a user’s preference profile.  Over the last years this particular problem has been intensively studied by a strongly interdisciplinary field based on ideas from choice theory, linear algebra, statistics, computer science and machine learning. This pluralism is reflected in the broad array of techniques that are used in today’s industry applications, i.e. collaborative filtering, matrix factorization, graph-based algorithms, decision trees or generalized linear models.

The aim of this workshop is twofold.

Firstly we want to give some insight into the statistical modelling techniques and assumptions employed at hotels.com, the practical challenges one has to face when designing a flexible and scalable recommender system and potential gaps between current research and real-world applications.

Secondly we are going to consider some more advanced questions around learning to rank from partial/incomplete feedback (1), dealing with selection-bias correction (2) and how econometrics and behavioral theory (eg Luce, Kahneman /Tversky) can be used to complement existing techniques (3).

 

Thu, 17 Nov 2016
12:00
L5

Green’s function for elliptic systems: Existence and stochastic bounds

Arianna Giunti
(Max Planck Institute Leipzig)
Abstract
We study the Green function G associated to the operator −∇ · a∇ in Rd, when a = a(x) is a (measurable) bounded and uniformly elliptic coefficient field. An example of De Giorgi implies that, in the case of systems, the existence of a Green’s function is not ensured by such a wide class of coefficient fields a. We give a more general definition of G and show that for every bounded and uniformly elliptic a, such G exists and is unique. In addition, given a stationary ensemble $\langle\cdot\rangle$ on a, we prove optimal decay estimates for $\langle|G|\rangle $ and $\langle|∇G|\rangle$. Under assumptions of quantification of ergodicity for $\langle\cdot\rangle$, we extend these bounds also to higher moments in probability. These results play an important role in the context of quantitative stochastic homogenization for −∇ · a∇. This talk is based on joint works with Peter Bella, Joseph Conlon and Felix Otto.

Many elastic structures have two possible equilibrium states. For example umbrellas that become inverted in a sudden gust of wind, nanoelectromechanical switches, origami patterns and even the hopper popper, which jumps after being turned inside-out. These systems typically move from one state to the other via a rapid ‘snap-through’. Snap-through allows plants to gradually store elastic energy, before releasing it suddenly to generate rapid motions, as in the Venus flytrap .

Wed, 19 Oct 2016

16:00 - 17:00
C1

Kähler groups, residually free groups and subgroups of direct products of surface groups.

Claudio Llosa Isenrich
(Oxford University)
Abstract

A Kähler group is a group which can be realised as the fundamental group of a close Kähler manifold. We will prove that for a Kähler group $G$ we have that $G$ is residually free if and only if $G$ is a full subdirect product of a free abelian group and finitely many closed hyperbolic surface groups. We will then address Delzant-Gromov's question of which subgroups of direct products of surface groups are Kähler: We explain how to construct subgroups of direct products of surface groups which have even first Betti number but are not Kähler. All relevant notions will be explained in the talk.

Mon, 14 Nov 2016

16:00 - 17:00
L4

Twisted X-Rays, Orbital Angular Momentum and the Determination of Atomic Structure

Richard James
(University of Minnesota)
Abstract

We find exact solutions of Maxwell's equations that are the precise analog of plane waves, but in the case that the translation group is replaced by the Abelian helical group. These waves display constructive/destructive interference with helical atomic structures, in the same way that plane waves interact with crystals. We show how the resulting far-field pattern can be used for structure determination. We test the method by doing theoretical structure determination on the Pf1 virus from the Protein Data Bank. The underlying mathematical idea is that the structure is the orbit of a group, and this group is a subgroup of the invariance group of the differential equations. Joint work with Dominik Juestel and Gero Friesecke. (Acta Crystallographica A72 and SIAM J. Appl Math).

Tue, 15 Nov 2016

12:00 - 13:15
L4

Ambitwister Strings

Lionel Mason
Abstract

The talk will review the origins
of ambitwistor strings, and  recent progress in extending them to a
wider variety of theories and loop amplitudes.

Tue, 07 Feb 2017

12:00 - 13:00
L4

Geometric scattering for linear quantum fields

Dr Michal Wrochna
(Grenoble)
Abstract

An essential ingredient of AdS/CFT, dS/CFT and other dualities is a geometric notion of scattering that refers to asymptotics rather than, say, infinite time limits. Though one expects non-perturbative versions to exist in the case of linear quantum fields (and non-linear classical fields), this has been rigorously implemented in Lorentzian settings only relatively recently. The goal of this talk will be to give an overview in different geometrical setups, including asymptotically Minkowski, de Sitter and Anti-de Sitter spacetimes. In particular I will discuss recent results on classical scattering and particle interpretations, compare them with the setup of conformal scattering and explain how they can be used to construct "in-out" Feynman propagators (based on joint works with Christian Gérard and András Vasy).

Tue, 17 Jan 2017

12:00 - 13:15
L4

Polylogarithmic Polygon Origami

Lance Dixon
(Stanford)
Abstract

Amplitudes in planar N=4 SYM are dual to light-like polygonal Wilson-loop expectation values. In many cases their perturbative expansion can be expressed in terms of multiple polylogarithms which also obey certain single-valuedness conditions or branch cut restrictions. The rigidity of this function space, together with a few other conditions, allows one to construct the six-point amplitude -- or hexagonal Wilson loop -- through at least five loops, and the seven-point amplitude through 3.5 loops. Then one can "fold" the polygonal Wilson loops into multiple degenerate configurations, expressing the limiting behavior in terms of simpler function spaces, and learning in the process about how amplitudes factorize.
 

Subscribe to