Tue, 11 Oct 2016
14:30
L6

Some applications of the p-biased measure to Erdős-Ko-Rado type problems

David Ellis
(Queen Mary University of London)
Abstract

'Erdős-Ko-Rado type problems' are well-studied in extremal combinatorics; they concern the sizes of families of objects in which any two (or any $r$) of the objects in the family 'agree', or 'intersect', in some way.

If $X$ is a finite set, the '$p$-biased measure' on the power-set of $X$ is defined as follows: choose a subset $S$ of $X$ at random by including each element of $X$ independently with probability $p$. If $\mathcal{F}$ is a family of subsets of $X$, one can consider the $p$-biased measure of $\mathcal{F}$, denoted by $\mu_p(\mathcal{F})$, as a function of $p$. If $\mathcal{F}$ is closed under taking supersets, then this function is an increasing function of $p$. Seminal results of Friedgut and Friedgut-Kalai give criteria under which this function has a 'sharp threshold'. Perhaps surprisingly, a careful analysis of the behaviour of this function also yields some rather strong results in extremal combinatorics which do not explicitly mention the $p$-biased measure - in particular, in the field of Erdős-Ko-Rado type problems. We will discuss some of these, including a recent proof of an old conjecture of Frankl that a symmetric three-wise intersecting family of subsets of $\{1,2,\ldots,n\}$ has size $o(2^n)$, and some 'stability' results characterizing the structure of 'large' $t$-intersecting families of $k$-element subsets of $\{1,2,\ldots,n\}$. Based on joint work with (subsets of) Nathan Keller, Noam Lifschitz and Bhargav Narayanan.

Mon, 28 Nov 2016

15:45 - 16:45
L6

Coefficients for commutative K-theory

Simon Gritschacher
(Oxford)
Abstract

I will begin the talk by reviewing the definition of commutative K-theory, a generalized cohomology theory introduced by Adem and Gomez. It is a refinement of topological K-theory, where the transition functions of a vector bundle satisfy a commutativity condition. The theory is represented by an infinite loop space which is called a “classifying space for commutativity”.  I will describe the homotopy type of this infinite loop space. Then I will discuss the graded ring structure on its homotopy groups, which corresponds to the tensor product of vector bundles.
 

Mon, 14 Nov 2016
15:45
L6

Some concordance invariants from knot Floer homology

Daniele Celoria
(Oxford)
Abstract

(Joint work with Marco Golla and József Bodnár)
We will give a general overview of the plethora of concordance invariants which can be extracted from Ozsváth-Szabó-Rasmussen's knot Floer homology. 
We will then focus on the $\nu^+$ invariant and prove some of its useful properties. 
Furthermore we will show how it can be used to obstruct the existence of cobordisms between algebraic knots.

Mon, 07 Nov 2016
15:45
L6

Polynomial-time Nielsen--Thurston type recognition

Richard Webb
(Cambridge)
Abstract

A cornerstone of the study of mapping class groups is the
Nielsen--Thurston classification theorem. I will outline a
polynomial-time algorithm that determines the Nielsen--Thurston type and
the canonical curve system of a mapping class. Time permitting, I shall
describe a polynomial-time algorithm to compute the quotient orbifold of
a periodic mapping class, and I shall discuss the conjugacy problem for
the mapping class group. This is joint work with Mark Bell.

Mon, 31 Oct 2016

15:45 - 16:45
L6

Cobordism maps in knot Floer homology

Andras Juhasz
(Oxford)
Abstract

Decorate knot cobordisms functorially induce maps on knot Floer homology.
We compute these maps for elementary cobordisms, and hence give a formula for 
the Alexander and Maslov grading shifts. We also show a non-vanishing result in the case of
concordances and present some applications to invertible concordances. 
This is joint work with Marco Marengon.
 

Mon, 21 Nov 2016

15:45 - 16:45
L6

Configuration spaces of hard disks

Matthew Kahle
(Ohio State University)
Abstract

Configuration spaces of points in a manifold are well studied. Giving the points thickness has obvious physical meaning: the configuration space of non-overlapping particles is equivalent to the phase space, or energy landscape, of a hard spheres gas. But despite their intrinsic appeal, relatively little is known so far about the topology of such spaces. I will overview some recent work in this area, including a theorem with Yuliy Baryshnikov and Peter Bubenik that related the topology of these spaces to mechanically balanced, or jammed, configurations. I will also discuss work in progress with Robert MacPherson on hard disks in an infinite strip, where we understand the asymptotics of the Betti numbers as the number of disks tends to infinity. In the end, we see a kind of topological analogue of a liquid-gas phase transition.

Mon, 24 Oct 2016

15:45 - 16:45
L6

Band Surgeries and Crossing Changes between Fibered Links

Dorothy Buck
(Imperial)
Abstract

We characterize cutting arcs on ber surfaces that produce new ber surfaces,
and the changes in monodromy resulting from such cuts. As a corollary, we
characterize band surgeries between bered links and introduce an operation called
generalized Hopf banding. We further characterize generalized crossing changes between
bered links, and the resulting changes in monodromy.

This is joint work with Matt Rathbun, Kai Ishihara and Koya Shimokawa

Fri, 02 Dec 2016
14:15
C3

Wetropolis flood demonstrator

Onno Bokhove
(School of Mathematics, University of Leeds)
Abstract

The mathematical design of the table flood demonstrator Wetropolis will be presented. Wetropolis illustrates the concepts of extreme rainfall and flooding.

It shows how extreme rainfall events  can cause flooding of a city due to groundwater and river flood peaks. Rainfall is supplied randomly in space using four outcomes (in a reservoir, on a moor, at both places or nowhere) and randomly in time using four rainfall intensities (1s, 2s, 4s, or 9s during a 10s Wetropolis day), including one extreme event, via two skew-symmetric discrete probability distributions visualised by two Galton boards. Wetropolis can be used for both public outreach and as scientific testing environment for flood mitigation and data assimilation.

More information: https://www.facebook.com/resurging.flows

Fri, 18 Nov 2016
14:15
C3

Analogue models of hydraulic fracturing

Finn Box
(University of Oxford)
Abstract

The spreading of a viscous fluid in between a rigid, horizontal substrate and an overlying elastic sheet is presented as a simplified model of the hydraulic fracturing process. In particular, the talk will focus on the case of a permeable substrate for which leak-off arrests the propagation of the fluid and permits the development of a steady state. The different regimes of  gravitationally-driven and elastically-driven flow will be explored, as will the cases of a stiff and flexible sheet, before a discussion of the influence that particles included in the fluid have on the fracture propagation. 

Subscribe to