Mon, 06 Jun 2016

12:00 - 13:00
L5

Black Holes and Higher Derivative Gravity

Kellogg Stelle
(Imperial College)
Abstract
Quantum corrections to the gravitational action generically include quadratic terms in the curvature. Moreover, these terms are distinguished with respect to other corrections in that their inclusion renders the theory renormalisable. The talk will discuss the changes their inclusion make to black hole solutions and the occurrence of other spherically symmetric solutions, such as wormholes and horizonless solutions.
All-flavour search for neutrinos from dark matter annihilations in the Milky Way with IceCube/DeepCore
Sarkar, S European Physical Journal C volume 76 issue 10 531 (01 Sep 2016)
Tue, 07 Jun 2016

15:45 - 16:45
L4

Matrix factorisation of Morse-Bott functions

Constantin Teleman
(Oxford)
Abstract

For a holomorphic function (“superpotential”)  W: X —> C on a complex manifold X, one defines the (2-periodic) matrix factorisation category MF(X;W), which is supported on the critical locus Crit(W) of W. At a Morse singularity, MF(X;W) is equivalent to the category of modules over the Clifford algebra on the tangent space TX. It had been suggested by Kapustin and Rozansky that, for Morse-Bott W, MF(X;W) should be equivalent to the (2-periodicised) derived category of Crit(W), twisted by the Clifford algebra of the normal bundle. I will discuss why this holds when the first neighbourhood of Crit(W) splits, why it fails in general, and will explain the correct general statement.

Plants use many strategies to disperse their seeds, but among the most fascinating are exploding seed pods. Scientists had assumed that the energy to power these explosions was generated through the seed pods deforming as they dried out, but in the case of ‘popping cress’ (Cardamine hirsuta) this turns out not to be so. These seed pods don’t wait to dry before they explode.

Wed, 01 Jun 2016

16:00 - 17:00
C1

Finding CAT(-1) structures on groups

Sam Brown
(UCL London)
Abstract

I will describe a method to find negatively curved structures on some groups, by manipulating metrics on piecewise hyperbolic complexes. As an example, I will prove that hyperbolic limit groups are CAT(-1).

The Fourier transform is that rarest of things: a mathematical method from over 200 years ago which not only remains an active area of research in its own right, but is also an invaluable tool in nearly every branch of mathematics. Though originally developed by Fourier in 1807 to help solve certain partial differential equations, the transform is a living example of a remarkable feature of mathematics, that a tool created in one sub-discipline can break through these artificial classifications and become vital in another.

Subscribe to