Fri, 10 Feb 2017

16:00 - 17:00
L1

Self-organized dynamics: from emergence of consensus to social hydrodynamics

Eitan Tadmor
(University of Maryland and ETH-ITS)
Abstract

Self-organization is observed in systems driven by the “social engagement” of agents with their local neighbors. Prototypical models are found in opinion dynamics, flocking, self-organization of biological organisms, and rendezvous in mobile networks.

We discuss the emergent behavior of such systems. Two natural questions arise in this context. The underlying issue of the first question is how different rules of engagement influence the formation of clusters, and in particular, the emergence of 'consensus'. Different paradigms of emergence yield different patterns, depending on the propagation of connectivity of the underlying graphs of communication.  The second question involves different descriptions of self-organized dynamics when the number of agents tends to infinity. It lends itself to “social hydrodynamics”, driven by the corresponding tendency to move towards the local means. 

We discuss the global regularity of social hydrodynamics for sub-critical initial configurations.

Fri, 10 Jun 2016

11:00 - 12:00
C2

Period rings

K. Ardakov
(Oxford)
Abstract

This talk will give a description of the period ring B_dR of Fontaine, which uses de Rham algebra computations. 

This talk is part of the workshop on Beilinson's approach to p-adic Hodge  theory.

Fri, 03 Jun 2016

11:00 - 12:00
C2

The de Rham algebra of a point in affine space

Damian Rössler
(Oxford)
Abstract

Following the notes and an article of B. Bhatt, we shall compute the de Rham algebra of the immersion of the zero-section of affine space over Z/p^nZ.

This talk is part of the workshop on Beilinson's approach to p-adic Hodge theory.

Fri, 27 May 2016

11:00 - 12:00
C2

The de Rham algebra

Kevin McGerty
(Oxford)
Abstract

This talk will describe the basic properties of the de Rham algebra, which is a generalisation of the de Rham algebra over smooth schemes, which was introduced by L. Illusie in his monograph 'Complexe cotangent et déformations'.

The work of Oxford University Professor Sir Andrew Wiles was celebrated as having 'heralded a new era in number theory' as he received the top international prize for mathematics. 

Sir Andrew received the 2016 Abel Prize from Crown Prince Hakon of Norway at the prize ceremony in Oslo on 24 May. He was awarded the prize 'for his stunning proof of Fermat's Last Theorem by way of the modularity conjecture for semistable elliptic curves, opening a new era in number theory'.

Thu, 26 May 2016

13:00 - 14:00
L4

Crystal, PBW, and canonical bases for quantized enveloping algebras

Gerald Cliff
(University of Alberta)
Abstract

Let U be the quantized enveloping algebra coming from a semi-simple finite dimensional complex Lie algebra. Lusztig has defined a canonical basis B for the minus part of U- of U. It has the remarkable property that one gets a basis of each highest-weight irreducible U-module V, with highest weight vector v, as the set of all bv which are not 0, as b varies in B. It is not known how to give the elements b explicitly, although there are algorithms.


For each reduced expression of the longest word in the Weyl group, Lusztig has defined a PBW basis P of U-, and for each b in B there is a unique p(b) in P such that b = p(b) + a linear combination of p' in P where the coefficients are in qZ[q]. This is much easier in the simply laced case. I show that the set of p(b)v, where b varies in B and bv is not 0, is a basis of V, and I can explicitly exhibit this basis in type A, and to some extent in types B, C, D.

It is known that B and P are crystal bases in the sense of Kashiwara. I will define Kashiwara operators, and briefly describe Kashiwara's approach to canonical bases, which he calls global bases. I show how one can calculate the Kashiwara operators acting on P, in types A, B, C, D, using tableaux of Kashiwara-Nakashima.

Subscribe to