12:00
Combinatorial proof of a Non-Renormalization theorem
Abstract
In "Higher Operations in Perturbation Theory", Gaiotto, Kulp, and Wu discussed Feynman integrals that control certain deformations in quantum field theory. The corresponding integrands are differential forms in Schwinger parameters. Specifically, the integrand $\alpha$ is associated to a single topological direction of the theory.
I will show how the combinatorial properties of graph polynomials lead to a relatively simple, explicit formula for $\alpha$, that can be evaluated quickly with a computer. This is interesting for two reasons. Firstly, knowing the explicit formula leads to an elementary proof of the fact that $\alpha$ squares to zero, which asserts the absence of quantum corrections in topological field theories of two (or more) dimensions, known as Kontsevich's formality theorem. Secondly, the underlying constructions and proofs are not intrinsically limited to topological theories. In this sense, they serve as a particularly instructive example for simplifications that can occur in Feynman integrals with numerators.
12:00
Asymptotic Higher Spin Symmetries in Gravity.
Abstract
I will first give a short review of the concepts of Asymptotically Flat Spacetimes, IR triangle and Noether's theorems. I will then present what Asymptotic Higher Spin Symmetries are and how they were introduced as a candidate for an approximate symmetry of General Relativity and the S-matrix. Next, I'll move on to the recent developments of establishing these symmetries as Noether symmetries and describing how they are canonically and non-linearly realized on the asymptotic gravitational phase space. I will discuss how the introduction of dual equations of motion encapsulates the non-perturbativity of the analysis. Finally I'll emphasize the relation to twistor, especially with 2407.04028. Based on 2409.12178 and 2410.15219
12:00
C for Carroll
Abstract
Physics beyond relativistic invariance and without Lorentz (or Poincaré) symmetry and the geometry underlying these non-Lorentzian structures have become very fashionable of late. This is primarily due to the discovery of uses of non-Lorentzian structures in various branches of physics, including condensed matter physics, classical and quantum gravity, fluid dynamics, cosmology, etc. In this talk, I will be talking about one such theory - Carrollian theory, where the Carroll group replaces the Poincare group as the symmetry group of interest. Interestingly, any null hypersurface is a Carroll manifold and the Killing vectors on the null manifold generate Carroll algebra. Historically, Carroll group was first obtained from the Poincaré group via a contraction by taking the speed of light going to zero limit as a “degenerate cousin of the Poincaré group”. I will shed some light on Carrollian fermions, i.e. fermions defined on generic null surfaces. Due to the degenerate nature of the Carroll manifold, there exist two distinct Carroll Clifford algebras and, correspondingly, two different Carroll fermionic theories. I will discuss them in detail. Then, I will show some examples; when the dispersion relation becomes trivial, i.e. energy bands flatten out, there can be a possibility of the emergence of Carroll symmetry.
12:00
Carroll approach to flat space holography in 3d
Abstract
Introduction to flat space holography in three dimensions and Carrollian CFT2, with selected results on correlation functions, thermal entropy, entanglement entropy and an outlook to Bondi news in 3d.
15:00
Topological Analysis of Bone Microstructure, Directed Persistent Homology and the Persistent Laplacian for Data Science
Note: we would recommend to join the meeting using the Teams client for best user experience.
Abstract
In this talk, I will give an overview of recent joint work on Topological Data Analysis (TDA). The first one is an application of TDA to quantify porosity in pathological bone tissue. The second is an extension of persistent homology to directed simplicial complexes. Lastly, we present an evaluation of the persistent Laplacian in machine learning tasks. This is joint work with Ysanne Pritchard, Aikta Sharma, Claire Clarkin, Helen Ogden, and Sumeet Mahajan; David Mendez; and Tom Davies and Zhengchao Wang, respectively.
Manifolds