Tue, 05 Nov 2024
16:00
L6

Random growth models with half space geometry

Jimmy He
(Ohio State University)
Abstract
Random growth models in 1+1 dimension capture the behavior of interfaces evolving in the presence of noise. These models are expected to exhibit universal behavior including intriguing occurrences of random matrix distributions, but we are still far from proving such results even in relatively simple models. A key development which has led to recent progress is the discovery of exact formulas for certain models with a rich algebraic structure. I will discuss some of these results, with a focus on models where a single boundary wall is present, as well as applications to other areas of probability.



 

A reminder - or an announcement if you have just joined us - all our merchandise can be bought online at the College Store. From fleeces to beanies to keyrings, we're on it. 

And if you use the code TCS-FRESH10 at the checkout you get 10% off. Obviously this is a code for freshers, but weren't we all once?

Written & co-directed by Marcus du Sautoy - an exploration of free will, war and mathematics.

Eminent mathematician Andre Weil is on a journey from France to India, Finland and beyond, to discover whether we really have free will or if all our choices are predetermined. Imprisoned in Rouen during the Second World War, Weil faces a choice that will determine his fate - but his decision just doesn’t make sense. Is life a mathematical theorem of logical strands? Because sometimes it just doesn’t add up.

Applications for the 2025 Jane Street Graduate Research Fellowship (GRF) are now open. The Fellowship supports exceptional doctoral students currently pursuing a PhD in computer science, mathematics, physics, or statistics.

The work of Nigel Hitchin and Martin Bridson is recognised among the four research laboratories established at Spain's ICMAT (The Institute of Mathematical Sciences) -  the Hitchin-Ngo lab and the Bridson-Reid lab.

Read more

Utilising an in silico model to predict outcomes in senescence-driven acute liver injury
Ashmore-Harris, C Antonopoulou, E Aird, R Man, T Finney, S Speel, A Lu, W Forbes, S Gadd, V Waters, S npj Regenerative Medicine volume 9 issue 1 (30 Sep 2024)
Thu, 31 Oct 2024
16:00
L3

Cusp forms of level one and weight zero

George Boxer
(Imperial College London)
Abstract
A theme in number theory is the non-existence of objects which are "too unramified".  For instance, by Minkowski there are no everywhere unramified extensions of Q, and by Fontaine and Abrashkin there are no abelian varieties over Q with everywhere good reduction.  Such results may be viewed (possibly conditionally) through the lens of the Stark-Odlyzko positivity method in the theory of L-functions.
 
After reviewing these things, I will turn to the question of this talk: for n>1 do there exist cuspidal automorphic forms for GL_n which are everywhere unramified and have lowest regular weight (cohomological weight 0)?  For n=2 these are more familiarly holomorphic cuspforms of level 1 and weight 2.  This question may be rephrased in terms of the existence of cuspidal cohomology of GL_n(Z) or (at least conjecturally) in terms of the existence of certain motives or Galois representations.  In 1997, Stephen Miller used the positivity method to show that they do not exist for n<27.  In the other direction, in joint work with Frank Calegari and Toby Gee, we prove that they do exist for some n, including n=79,105, and 106.
Thu, 14 Nov 2024
16:00
Lecture Room 3

An analytic formula for points on elliptic curves

Alan Lauder
(University of Oxford)
Abstract

Given an elliptic curve over the rationals, a natural problem is to find an explicit point of infinite order over a given number field when there is expected to be one. Geometric constructions are known in only two different settings. That of Heegner points, developed since the 1950s, which yields points over abelian extensions of imaginary quadratic fields. And that of Stark-Heegner points, from the late 1990s: here the points constructed are conjectured to be defined over abelian extensions of real quadratic fields. I will describe a new analytic formula which encompasses both of these, and conjecturally yields points in many other settings. This is joint work with Henri Darmon and Victor Rotger.

Thu, 17 Oct 2024
16:00
L4

Risk, utility and sensitivity to large losses

Dr Nazem Khan
(Mathematical Institute)
Further Information

Please join us for refreshments outside the lecture room from 15:30.

Abstract
Risk and utility functionals are fundamental building blocks in economics and finance. In this paper we investigate under which conditions a risk or utility functional is sensitive to the accumulation of losses in the sense that any sufficiently large multiple of a position that exposes an agent to future losses has positive risk or negative utility. We call this property sensitivity to large losses and provide necessary and sufficient conditions thereof that are easy to check for a very large class of risk and utility functionals. In particular, our results do not rely on convexity and can therefore also be applied to most examples discussed in the recent literature, including (non-convex) star-shaped risk measures or S-shaped utility functions encountered in prospect theory. As expected, Value at Risk generally fails to be sensitive to large losses. More surprisingly, this is also true of Expected Shortfall. By contrast, expected utility functionals as well as (optimized) certainty equivalents are proved to be sensitive to large losses for many standard choices of concave and nonconcave utility functions, including S-shaped utility functions. We also show that Value at Risk and Expected Shortfall become sensitive to large losses if they are either properly adjusted or if the property is suitably localized.

 
Subscribe to