12:00
Recent progress on the inverse scattering theory for ideal Alfvén waves
Abstract
The Alfvén waves are fundamental wave phenomena in magnetized plasmas. Mathematically, the dynamics of Alfvén waves are governed by a system of nonlinear partial differential equations called the magnetohydrodynamics (MHD) equations. Let us introduce some recent results about inverse scattering of Alfvén waves in ideal MHD, which are intended to establish the relationship between Alfvén waves emanating from the plasma and their scattering fields at infinities.The proof is mainly based on the weighted energy estimates. Moreover, the null structure inherent in MHD equations is thoroughly examined, especially when we estimate the pressure term.
12:00
Homogenisation for compressible fluids
Abstract
Several physical models are available to understand the dynamics of fluid mixtures, including the so-called Baer-Nunziato models. The partial differential equations associated with these models look like those of Navier-Stokes, with the addition of new relaxation terms. One strategy to obtain these models is homogenisation: starting from a mesoscopic mixture, where two pure fluids satisfying the compressible Navier-Stokes equations share the space between them, a change of scale is performed to obtain a macroscopic mixture, where the two fluids can coexist at any point in space.
This problem concerns the study of the Navier-Stokes equations with strongly oscillating initial data. We'll start by explaining some results in this framework, in one dimension of space and on the torus, for barotropic fluids. We will then detail the various steps involved in demonstrating homogenisation. Finally, we'll explain how to adapt this reasoning to homogenisation for perfect gases, with and without heat conduction.
12:00