Quantitative convergence in relative entropy for a moderately interacting particle system on $\R^d$
Holzinger, A Chen, L Huo, X Electronic Journal of Probability

About the role

We have an exciting opportunity for a motivated and extremely well-organised individual to join the world-leading Mathematical Institute on a permanent, full-time basis as Graduate Studies Officer. 

Real-time inference of the end of an outbreak: Temporally aggregated disease incidence data and under-reporting
Ogi-Gittins, I Polonsky, J Keita, M Ahuka-Mundeke, S Hart, W Plank, M Lambert, B Hill, E Thompson, R Infectious Disease Modelling (01 Apr 2025)
Thu, 15 May 2025
12:00
C6

Recent progress on the inverse scattering theory for ideal Alfvén waves

Mengni Li
(Southeast University, Nanjing)
Abstract

The Alfvén waves are fundamental wave phenomena in magnetized plasmas. Mathematically, the dynamics of Alfvén waves are governed by a system of nonlinear partial differential equations called the magnetohydrodynamics (MHD) equations. Let us introduce some recent results about inverse scattering of Alfvén waves in ideal MHD, which are intended to establish the relationship between Alfvén waves emanating from the plasma and their scattering fields at infinities.The proof is mainly based on the weighted energy estimates. Moreover, the null structure inherent in MHD equations is thoroughly examined, especially when we estimate the pressure term.

Thu, 22 May 2025
12:00
C6

Homogenisation for compressible fluids

Pierre Gonin-Joubert
(Université Claude Bernard Lyon 1)
Abstract

Several physical models are available to understand the dynamics of fluid mixtures, including the so-called Baer-Nunziato models. The partial differential equations associated with these models look like those of Navier-Stokes, with the addition of new relaxation terms. One strategy to obtain these models is homogenisation: starting from a mesoscopic mixture, where two pure fluids satisfying the compressible Navier-Stokes equations share the space between them, a change of scale is performed to obtain a macroscopic mixture, where the two fluids can coexist at any point in space.

This problem concerns the study of the Navier-Stokes equations with strongly oscillating initial data. We'll start by explaining some results in this framework, in one dimension of space and on the torus, for barotropic fluids. We will then detail the various steps involved in demonstrating homogenisation. Finally, we'll explain how to adapt this reasoning to homogenisation for perfect gases, with and without heat conduction.

Thu, 22 May 2025

12:00 - 13:30
L6

TBA

Ingmar Saberi
(Ludwig-Maximilians-Universität München)
Fri, 11 Apr 2025
12:00
L4

Matrix models and the amplitude/Wilson loop duality

Atul Sharma
(Harvard)
Abstract
I will describe "open-closed-open triality" in the computation of a (holomorphic) Wilson loop correlator in self-dual N=4 SYM uplifted to twistor space. By the amplitude/Wilson loop duality, this generates a matrix model that computes tree amplitudes in N=4 SYM. I will also describe hopes of embedding this matrix model into twisted holography. In particular, I will present a top-down gravitational dual to self-dual N=4 SYM.
 
Wrinkling of a bilayer with spatially-varying stiffness: from wrinkle branching to cascades
Vella, D O'Kiely, D (01 Jan 2025)
Subscribe to