Tue, 11 Mar 2025
13:00
L5

Topological Quantum Dark Matter via Standard Model's Global Gravitational Anomaly Cancellation

Juven Wang
(LIMS)
Abstract
In this talk, we propose that topological order can replace sterile neutrinos as dark matter candidates 
to cancel the Standard Model’s global gravitational anomalies. Standard Model (SM) with 15 Weyl fermions per family 
(lacking the 16th, the sterile right-handed neutrino νR) suffers from mixed gauge-gravitational anomalies tied to baryon number plus or minus
lepton number B±L symmetry. Including νR per family can cancel these anomalies, but when B±L
symmetry is preserved as discrete finite subgroups rather than a continuous U(1), the perturbative
local anomalies become nonperturbative global anomalies. We systematically enumerate
these gauge-gravitational global anomalies involving discrete B ± L that are enhanced from the
fermion parity ZF2 to ZF2N , with N = 2, 3, 4, 6, 9, etc. The discreteness of B ± L is constrained by
multi-fermion deformations beyond-the-SM and the family number Nf . Unlike the free quadratic
νR Majorana mass gap preserving the minimal ZF2 , we explore novel scenarios canceling (B ± L)-gravitational anomalies 
while preserving the ZF2N discrete symmetries, featuring 4-dimensional interacting gapped topological orders 
or gapless sectors (e.g., conformal field theories). We propose symmetric anomalous sectors as 
quantum dark matter to cancel SM’s global anomalies. We find the uniqueness
of the family number at Nf = 3, such that when the representation of ZF2N from the faithful B + L
for baryons at N = Nf = 3 is extended to the faithful Q + NcL for quarks at N = NcNf = 9, this
symmetry extension ZNc=3 → ZNcNf =9 → ZNf =3 matches with the topological order dark matter
construction. Key implications include: (1) a 5th force mediating between SM and dark matter via
discrete B±L gauge fields, (2) dark matter as topological order quantum matter with gapped anyon
excitations at ends of extended defects, and (3) Ultra Unification and topological leptogenesis.

The community mile is a mass event, open to all abilities and ages from six and above. The course (1 mile long) will start on St Aldate’s and proceed down the High Street, crossing Magdalen Bridge before finishing on Iffley Road, where bespoke finisher medals will be presented. 

From 9 am on Monday 5th May.

Professor Kosuke Imai, Harvard University - Does AI help humans make better decisions? A statistical evaluation framework for experimental and observational studies.

Thursday 13th March 2025, 4.00 pm - 5.00 pm in the Seminar Room, Department of Earth Sciences, South Parks Road, Oxford. 

Tue, 11 Mar 2025
12:00
C4

Non-commutative derived geometry

Federico Bambozzi
(University of Padova)
Abstract

I will describe a non-commutative version of the Zariski topology and explain how to use it to produce a functorial spectrum for all derived rings. If time permits I will give some examples and show how a weak form of Gelfand duality for non-commutative rings can be deduced from this. This work is in collaboration with Simone Murro and Matteo Capoferri.

Mon, 26 May 2025
14:15
L5

Towards a gauge-theoretic approximation of codimension-three area

Alessandro Pigati
(Bocconi University)
Abstract

In the last three decades, a fruitful way to approximate the area functional in low codimension is to interpret submanifolds as the nodal sets of maps (or sections of vector bundles), critical for suitable physical energies or well-known lagrangians from gauge theory. Inspired by the situation in codimension two, where the abelian Higgs model has provided a successful framework, we look at the non-abelian SU(2) model as a natural candidate in codimension three. In this talk we will survey the new key difficulties and some recent partial results, including a joint work with D. Parise and D. Stern and another result by Y. Li.

Low complexity among principal fully irreducible elements of Out(F3)
Andrew, N Hillen, P Lyman, R Pfaff, C Algebraic and Geometric Topology
Homology growth of polynomially growing mapping tori
Andrew, N Guerch, Y Hughes, S Kudlinska, M Groups, Geometry, and Dynamics
Subscribe to