Homology growth of polynomially growing mapping tori
Andrew, N Guerch, Y Hughes, S Kudlinska, M Groups, Geometry, and Dynamics
Global Bifurcations Organizing Weak Chimeras in Three Symmetrically Coupled Kuramoto Oscillators with Inertia
Ashwin, P Bick, C Journal of Nonlinear Science volume 35 issue 2 (18 Feb 2025)
Thu, 27 Feb 2025
12:00
C6

Aggregation-diffusion equations with saturation

Alejandro Fernández-Jiménez
(University of Oxford)
Abstract

On this talk we will focus on the family of aggregation-diffusion equations

 

$$\frac{\partial \rho}{\partial t} = \mathrm{div}\left(\mathrm{m}(\rho)\nabla (U'(\rho) + V) \right).$$

 

Here, $\mathrm{m}(s)$ represents a continuous and compactly supported nonlinear mobility (saturation) not necessarily concave. $U$ corresponds to the diffusive potential and includes all the porous medium cases, i.e. $U(s) = \frac{1}{m-1} s^m$ for $m > 0$ or $U(s) = s \log (s)$ if $m = 1$. $V$ corresponds to the attractive potential and it is such that $V \geq 0$, $V \in W^{2, \infty}$.

 

Taking advantage of a family of approximating problems, we show the existence of $C_0$-semigroups of $L^1$ contractions. We study the $\omega$-limit of the problem, its most relevant properties, and the appearance of free boundaries in the long-time behaviour. Furthermore, since this problem has a formal gradient-flow structure, we discuss the local/global minimisers of the corresponding free energy in the natural topology related to the set of initial data for the $L^\infty$-constrained gradient flow of probability densities. Finally, we explore the properties of a corresponding implicit finite volume scheme introduced by Bailo, Carrillo and Hu.

 

The talk presents joint work with Prof. J.A. Carrillo and Prof. D.  Gómez-Castro.

Tidal stretching of gravitons into classical strings: application to jet
quenching with AdS/CFT
Arnold, P Szepietowski, P Vaman, D Wong, G (13 Dec 2012) http://arxiv.org/abs/1212.3321v2
Subscribe to