13:00
Generalized Toric Polygons, T-branes, and 5d SCFTs
Abstract
5d Superconformal Field Theories (SCFTs) are intrinsically strongly-coupled UV fixed points, whose realization hinges on string theoretic methods: they can be constructed by compactifying M-theory on local Calabi-Yau threefold singularities or alternatively from the world-volume of 5-brane-webs in type IIB string theory. There is a correspondence between 5-brane-webs and toric Calabi-Yau threefolds, however this breaks down when multiple 5-branes are allowed to end on a single 7-brane. In this talk, we extend this connection and provide a geometric realization of brane configurations including 7-branes. Along the way, we also review techniques developed in the past few years to describe the Higgs branch of these 5d SCFTs, including magnetic quivers and Hasse diagram for symplectic singularities.
12:30
Studying occupational mobility using online resume data
Abstract
Data sets of self-reported online resumes are a valuable tool to understand workers' career trajectories and how workers may adapt to the changing demands of employers. However, the sample of workers that choose to upload their resumes online may not be representative of a nation's workforce. To understand the advantages and limitations of these datasets, we analyze a data set of more than 1 Million online resumes and compare the findings with a administrative data from the Current Population Survey (CPS).
12:30
Mathematical modelling of liquid lithium inside a tokamak fusion reactor
Abstract
We model a tokamak fusion reaction, combining Maxwell's equations with the Navier-Stokes equations, the heat equation and the Seebeck effect giving a model of thermoelectric magnetohydrodynamics (TEMHD). At leading order, we showed that the free surface must be flat, that the pressure is constant, and that the temperature decouples from the governing equations relating the fluid velocity and magnetic field. We also find that the fluid flow is driven entirely by the temperature gradient normal to the free surface. Using singular perturbation methods we obtained velocity profiles which exhibit so-called Hartmann layers and thicker side layers. The role of the aspect ratio has been seldom considered in classical MHD duct flow literature as a varying parameter. Here, we show it's importance and derive a relationship between the aspect ratio and Hartmann number that maximises flow rate of fluid down the duct.