14:00
14:00
13:00
The Penrose Inequality: An Application of Geometric PDEs to Physics
Abstract
In this talk, I will discuss a conjecture of Penrose, which asserts a lower bound on the mass of a spacetime in terms of the area of a suitable horizon. Whilst Penrose presented a physical motivation for this inequality in the 1970s, the only proofs heavily rely upon PDE arguments, and in particular the use of geometric flows. I hope to show in this talk, through this concrete example (and without unpleasant technical details!), how ideas from geometric PDE theory can be helpful in obtaining results in physics.
n-ampleness and pseudobuildings
Abstract
Translation varieties
Abstract
In algebraic geometry, the technique of dévissage reduces many questions to the case of curves. In difference and differential algebra, this is not the case, but the obstructions can be closely analysed. In difference algebra, they are difference varieties defined by equations of the form $\si(x)=g x$, determined by an action of an algebraic group and an element g of this group. This is joint work with Zoé Chatzidakis.