Random Walks on Lie Groups and Diophantine Approximation
Abstract
After a general introduction to the study of random walks on groups, we discuss the relationship between limit theorems for random walks on Lie groups and Diophantine properties of the underlying distribution. Indeed, we will discuss the classical abelian case and more recent results by Bourgain-Gamburd for compact simple Lie groups such as SO(3). If time permits, we discuss some new results for non-compact simple Lie groups such as SL_2(R). We hope to touch on the relevant methods from harmonic analysis, number theory and additive combinatorics. The talk is aimed at a general audience.
Existence of branched coverings of surfaces
Abstract
A branched covering between two surfaces looks like a regular covering map except for finitely many branching points, where some non-trivial ramification may occur. Informally speaking, the existence problem asks whether we can find a branched covering with prescribed behaviour around its branching points.
A variety of techniques have historically been employed to tackle this problem, ranging from studying representations of surface groups into symmetric groups to drawing "dessins d'enfant" on the covering surface. After introducing these techniques and explaining how they can be applied to the existence problem, I will briefly present a conjecture unexpectedly relating branched coverings and prime numbers.
Pseudo-Anosov flows on 3-manifolds
Abstract
This will be a gentle introduction to the theory of pseudo-Anosov flows on 3-manifolds, as seen from the perspective of a topologist and not a dynamicist.
I will start by considering geodesic flows on the unit tangent bundles of hyperbolic surfaces. This will lead to a definition of an Anosov and then a pseudo-Anosov flow on a 3-manifold. After discussing a couple of examples, I will outline some connections between pseudo-Anosov flows and other aspects of 3-manifold topology/ geometry/ group theory.
Acylindrical hyperbolicity via mapping class groups
Abstract
We will give a fairly self contained introduction to acylindrically hyperbolic groups, using mapping class groups as a motivating example. This will be a mainly expository talk, the aim is to make my topology seminar talk in week 5 more accessible to people who are less familiar with these topics.
Refinements of G2 structures
Note the unusual time 13:00.
Abstract
G2 structure manifolds are a key ingredient in supersymmetric compactifications on seven-manifolds. We will discuss the fact that G2 structure manifolds admit refinements in the form of almost contact (3-) structures. In fact, there are infinite dimensional spaces of these structures. We will discuss topological and differential geometric aspects of (the space of) these refinements. We will then explore applications in physics, including supersymmetry enhancement. This is based on 2101.12605.
The nonlinear stability of Kerr for small angular momentum
Abstract
I will report on my most recent results with Jeremie Szeftel and Elena Giorgi which conclude the proof of the nonlinear, unconditional, stability of slowly rotating Kerr metrics. The main part of the proof, announced last year, was conditional on results concerning boundedness and decay estimates for nonlinear wave equations. I will review the old results and discuss how the conditional results can now be fully established.