Gaussian distribution of squarefree and B-free numbers in short intervals
Abstract
As a model for the primes, in this talk I will address such statistical questions for the sequence of squarefree numbers, i.e., numbers not divisible by the square of any prime, among other related ``sifted'' sequences called B-free numbers. I hope to further motivate and explain our main result that shows, unconditionally, that short interval counts of squarefree numbers do satisfy Gaussian statistics, answering several questions of R.R. Hall.
Finite element methods for the Stokes–Onsager–Stefan–Maxwell equations of multicomponent flow
Abstract
The Onsager framework for linear irreversible thermodynamics provides a thermodynamically consistent model of mass transport in a phase consisting of multiple species, via the Stefan–Maxwell equations, but a complete description of the overall transport problem necessitates also solving the momentum equations for the flow velocity of the medium. We derive a novel nonlinear variational formulation of this coupling, called the (Navier–)Stokes–Onsager–Stefan–Maxwell system, which governs molecular diffusion and convection within a non-ideal, single-phase fluid composed of multiple species, in the regime of low Reynolds number in the steady state. We propose an appropriate Picard linearisation posed in a novel Sobolev space relating to the diffusional driving forces, and prove convergence of a structure-preserving finite element discretisation. The broad applicability of our theory is illustrated with simulations of the centrifugal separation of noble gases and the microfluidic mixing of hydrocarbons.
Burns holography
Abstract
Holography in asymptotically flat spaces is one of the most coveted goals of modern mathematical physics. In this talk, I will motivate a novel holographic description of self-dual SO(8) Yang-Mills + self-dual conformal gravity on a Euclidean signature, asymptotically flat background called Burns space. The holographic dual lives on a stack of D1-branes wrapping a CP^1 cycle in the twistor space of R^4 and is given by a gauged beta-gamma system with SO(8) flavor and a pair of defects at the north and south poles. It provides the first example of a stringy realization of (asymptotically) flat holography and is a Euclidean signature variant of celestial holography. This is based on ongoing work with Kevin Costello and Natalie Paquette.