Quantum field theory (QFT) is a natural language for describing quantum physics that obeys special relativity. A modern perspective on QFT is provided by the renormalization group (RG) flow, which is a path defined on the coupling constant space and evolves from the ultraviolet (UV) to the infrared (IR) fixed point. In particular, the theories on the IR fixed point are scale-invariant and most of them are known to be promoted to a conformal field theory (CFT).
Non-branching in RCD(K,N) Spaces
Abstract
On a smooth Riemannian manifold, the uniqueness of a geodesic given initial conditions follows from standard ODE theory. This is known to fail in the setting of RCD(K,N) spaces (metric measure spaces satisfying a synthetic notion of Ricci curvature bounded below) through an example of Cheeger-Colding. Strengthening the assumption a little, one may ask if two geodesics which agree for a definite amount of time must continue on the same trajectory. In this talk, I will show that this is true for RCD(K,N) spaces. In doing so, I will generalize a well-known result of Colding-Naber concerning the Hölder continuity of small balls along geodesics to this setting.
Junior Algebra and Rep Theory social
We will meet to catch up after Easter break, over coffee and biscuits.
A modular construction of unramified p-extensions of Q(N^{1/p})
Abstract
In his 1976 proof of the converse of Herbrand’s theorem, Ribet used Eisenstein-cuspidal congruences to produce unramified degree-p extensions of the p-th cyclotomic field when p is an odd prime. After reviewing Ribet’s strategy, we will discuss recent work with Preston Wake in which we apply similar techniques to produce unramified degree-p extensions of Q(N^{1/p}) when N is a prime that is congruent to -1 mod p. This answers a question posed on Frank Calegari’s blog.