Fri, 25 Feb 2022

11:45 - 13:15
L4

InFoMM CDT Group Meeting

Sophie Abrahams, Anna Berryman
(Mathematical Institute (University of Oxford))
Fri, 28 Jan 2022

11:45 - 13:15
L4

InFoMM CDT Group Meeting

Christoph Hoeppke, Georgia Brennan
(Mathematical Institute (University of Oxford))
Fri, 17 Dec 2021

11:45 - 13:15
Virtual

InFoMM CDT Group Meeting

James Harris, Meredith Ellis
(Mathematical Institute (University of Oxford))
Fri, 26 Nov 2021

11:45 - 13:15
L4

InFoMM CDT Group Meeting

Nicolas Boulle, Brady Metherall
(Mathematical Institute (University of Oxford))
Fri, 22 Oct 2021

11:45 - 13:15
L4

InFoMM CDT Group Meeting

Joel Dyer, Deqing Jiang
(Mathematical Institute (University of Oxford))
Fri, 12 Nov 2021

14:00 - 15:00
C3

sl_2-triples in classical Lie algebras over fields of positive characteristic

Rachel Pengelly
(University of Birmingham)
Abstract

Let $K$ be an algebraically closed field. Given three elements of some Lie algebra over $K$, we say that these elements form an $sl_2$-triple if they generate a subalgebra which is a homomorphic image of $sl_2(K).$ In characteristic 0, the Jacobson-Morozov theorem provides a bijection between the orbits of nilpotent elements of the Lie algebra and the orbits of $sl_2$-triples. In this talk I will discuss the progress made in extending this result to fields of characteristic $p$. In particular, I will focus on the results in classical Lie algebras, which can be found as subsets of $gl_n(K)$.

Fri, 22 Oct 2021

14:00 - 15:00
N3.12

Non-commutative Krull dimension and Iwasawa algebras

James Timmins
(University of Oxford)
Abstract

The Krull dimension is an ideal-theoretic invariant of an algebra. It has an important meaning in algebraic geometry: the Krull dimension of a commutative algebra is equal to the dimension of the corresponding affine variety/scheme. In my talk I'll explain how this idea can be transformed into a tool for measuring non-commutative rings. I'll illustrate this with important examples and techniques, and describe what is known for Iwasawa algebras of compact $p$-adic Lie groups.

Commentary on the use of the reproduction number R during the COVID-19 pandemic
Vegvari, C Abbott, S Ball, F Brooks-Pollock, E Challen, R Collyer, B Dangerfield, C Gog, J Gostic, K Heffernan, J Hollingsworth, T Isham, V Kenah, E Mollison, D Panovska-Griffiths, J Pellis, L Roberts, M Scalia Tomba, G Thompson, R Trapman, P Statistical Methods in Medical Research volume 31 issue 9 1675-1685 (27 Sep 2021)
Subscribe to