Thu, 16 Oct 2025
15:00
L6

Operator algebras meet (generalized) global symmetries

Andrea Antinucci
Abstract

Two different, almost orthogonal approaches to QFT are: (1) the study of von Neumann algebras of local observables in flat space, and (2) the study of extended and topological defects in general spacetime manifolds. While naively the two focus on different aspects, it has been recently pointed out that some of the axioms of approach (1) clash with certain expectations from approach (2). In this JC talk, I’ll give a brief introduction to both approaches and review the recent discussion in [2008.11748], [2503.20863], and [2509.03589], explaining (i) what the tensions are, (ii) a recent proposal to solve them, and (iii) why it can be useful.

Short reachability networks
Groenland, C Johnston, T Radcliffe, J Scott, A Discrete Mathematics & Theoretical Computer Science
Tue, 18 Nov 2025

15:30 - 16:30
Online

Separation of roots of random polynomials

Marcus Michelen
(Northwestern University)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

What do the roots of random polynomials look like? Classical works of Erdős-Turán and others show that most roots are near the unit circle and they are approximately rotationally equidistributed. We will begin with an understanding of why this happens and see how ideas from extremal combinatorics can mix with analytic and probabilistic arguments to show this. Another main feature of random polynomials is that their roots tend to "repel" each other. We will see various quantitative statements that make this rigorous. In particular, we will study the smallest separation $m_n$ between pairs of roots and show that typically $m_n$ is on the order of $n^{-5/4}$. We will see why this reflects repulsion between roots and discuss where this repulsion comes from. This is based on joint work with Oren Yakir.

Tue, 21 Oct 2025

14:00 - 15:00
L4

TBA

Omer Angel
(University of British Columbia)
Tue, 14 Oct 2025

14:00 - 15:00
L4

An exponential upper bound on induced Ramsey numbers

Marcelo Campos
(Instituto Nacional de Matemática Pura e Aplicada (IMPA))
Abstract
The induced Ramsey number $R_{ind}(H)$ of a graph $H$ is the minimum number $N$ such that there exists a graph with $N$ vertices for which all red/blue colorings of its edges contain a monochromatic induced copy of $H$. In this talk I'll show there exists an absolute constant $C > 0$ such that, for every graph $H$ on $k$ vertices, these numbers satisfy $R_{ind}(H) ≤ 2^{Ck}$. This resolves a conjecture of Erdős from 1975.
 
This is joint work with Lucas Aragão, Gabriel Dahia, Rafael Filipe and João Marciano.
Thu, 23 Oct 2025

13:00 - 14:00
Lecture Room 5

Markov α-potential games

Xinyu Li
(Mathematical Institute (University of Oxford))
Abstract

We propose a new framework of Markov α-potential games to study Markov games. 

We show that any Markov game with finite-state and finite-action is a Markov α-potential game, and establish the existence of an associated α-potential function. Any optimizer of an α-potential function is shown to be an α-stationary Nash equilibrium. We study two important classes of practically significant Markov games, Markov congestion games and the perturbed Markov team games, via the framework of Markov α-potential games, with explicit characterization of an upper bound for αand its relation to game parameters. 

Additionally, we provide a semi-infinite linear programming based formulation to obtain an upper bound for α for any Markov game. 

Furthermore, we study two equilibrium approximation algorithms, namely the projected gradient- ascent algorithm and the sequential maximum improvement algorithm, along with their Nash regret analysis.

 

This talk is part of the Erlangen AI Hub.

 

 

 

Subscribe to