Quasi-BNS invariants
Heuer, N Kielak, D Groups, Geometry, and Dynamics (09 Dec 2025)
Cyclic loading of a heterogeneous non-linear poroelastic material
Godard, Z Moulton, D Waters, S Soft Matter (05 Sep 2025)
Mon, 17 Nov 2025

14:00 - 15:00
Lecture Room 3

Self-Supervised Machine Imaging

Prof Mike Davies
(University of Edinburgh)
Abstract

Modern deep learning methods provide the state-of-the-art in image reconstruction in most areas of computational imaging. However, such techniques are very data hungry and in a number of key imaging problems access to ground truth data is challenging if not impossible. This has led to the emergence of a range of self-supervised learning algorithms for imaging that attempt to learn to image without ground truth data. 

In this talk I will review some of the existing techniques and look at what is and might be possible in self-supervised imaging.

Tue, 10 Mar 2026
15:30
L4

Towards a Bogomolov-Miyaoka-Yau inequality for symplectic 4-manifolds

Paul Feehan
(Rutgers)
Abstract

The Bogomolov-Miyaoka-Yau inequality for minimal compact complex surfaces of general type was proved in 1977 independently by Miyaoka, using methods of algebraic geometry, and by Yau, as an outgrowth of his proof of the Calabi conjectures. In this talk, we outline our program to prove the conjecture that symplectic 4-manifolds with $b^+>1$ obey the Bogomolov-Miyaoka-Yau inequality. Our method uses Morse theory on the gauge theoretic moduli space of non-Abelian monopoles, where the Morse function is a Hamiltonian for a natural circle action and natural two-form.  We shall describe generalizations of Donaldson’s symplectic subspace criterion (1996) from finite to infinite dimensions. These generalized symplectic subspace criteria can be used to show that the natural two-form is non-degenerate and thus an almost symplectic form on the moduli space of non-Abelian monopoles. This talk is based on joint work with Tom Leness and the monographs https://arxiv.org/abs/2010.15789  (to appear in AMS Mathematical Surveys and Monographs), https://arxiv.org/abs/2206.14710 and https://arxiv.org/abs/2410.13809

Mon, 20 Oct 2025

16:30 - 17:30
L4

On non-isothermal flows of dilute incompressible polymeric fluids

Prof Josef Málek
(Faculty of Mathematics and Physics Charles University Prague)
Abstract

 In the first part of the talk, after revisiting some classical models for dilute polymeric fluids, we show that thermodynamically 
consistent models for non-isothermal flows of such fluids can be derived in a very elementary manner. Our approach is based on identifying the 
energy storage mechanisms and entropy production mechanisms in the fluid of interest, which in turn leads to explicit formulae for the Cauchy 
stress tensor and for all the fluxes involved. Having identified these mechanisms, we first derive the governing system of nonlinear partial 
differential equations coupling the unsteady incompressible temperature-dependent Navier–Stokes equations with a 
temperature-dependent generalization of the classical Fokker–Planck equation and an evolution equation for the internal energy. We then 
illustrate the potential use of the thermodynamic basis on a rudimentary stability analysis—specifically, the finite-amplitude (nonlinear) 
stability of a stationary spatially homogeneous state in a thermodynamically isolated system.

In the second part of the talk, we show that sequences of smooth solutions to the initial–boundary-value problem, which satisfy the 
underlying energy/entropy estimates (and their consequences in connection with the governing system of PDEs), converge to weak 
solutions that satisfy a renormalized entropy inequality. The talk is based on joint results with Miroslav Bulíček, Mark Dostalík, Vít Průša 
and Endré Süli.

Mon, 13 Oct 2025

16:30 - 17:30
L4

Local L^\infty estimates for optimal transport problems

Prof Lukas Koch 
(School of Mathematical and Physical Sciences University of Sussex)
Abstract

I will explain how to obtain local L^\infty estimates for optimal transport problems. Considering entropic optimal transport and optimal transport with p-cost, I will show how such estimates, in combination with a geometric linearisation argument, can be used in order to obtain ε-regularity statements. This is based on recent work in collaboration with M. Goldman (École Polytechnique) and R. Gvalani (ETH Zurich).

Thu, 25 Sep 2025
11:00
C6

Free information geometry and the large-n limit of random matrices

David Jekel
(University of Copenhagen)
Abstract

I will describe recent developments in information geometry (the study of optimal transport and entropy) for the setting of free probability.  One of the main goals of free probability is to model the large-n behavior of several $n \times n$ matrices $(X_1^{(n)},\dots,X_m^{(n)})$ chosen according to a sufficiently nice joint distribution that has a similar formula for each n (for instance, a density of the form constant times $e^{-n^2 \tr_n(p(x))}$ where $p$ is a non-commutative polynomial).  The limiting object is a tuple $(X_1,\dots,X_m)$ of operators from a von Neumann algebra.  We want the entropy and the optimal transportation distance of the probability distributions on $n \times n$ matrix tuples converge in some sense to their free probabilistic analogs, and so to obtain a theory of Wasserstein information geometry for the free setting.  I will present both negative results showing unavoidable difficulties in the free setting, and positive results showing that nonetheless several crucial aspects of information geometry do adapt.

From trees to barcodes and back again II: Combinatorial and probabilistic aspects of a topological inverse problem
Curry, J DeSha, J Garin, A Hess, K Kanari, L Mallery, B Computational Geometry volume 116 102031-102031 (Jan 2024)
3-handle construction on II₁ factors
Patchell, G Kunnawalkam Elayavalli, S Gao, D Proceedings of the American Mathematical Society
Controlling morpho-electrophysiological variability of neurons with detailed biophysical models.
Arnaudon, A Reva, M Zbili, M Markram, H Van Geit, W Kanari, L iScience volume 26 issue 11 108222 (16 Nov 2023)
Subscribe to