Thu, 20 Jun 2019

12:00 - 13:00
L4

On well posedness of stochastic mass critical NLS

Chenjie Fan
(University of Chicago)
Abstract

We will discuss the similarity and difference between deterministic and stochastic NLS. Different notions (or possible formulations) of local solutions will also be discussed. We will also present a global well posedness result for stochastic mass critical NLS. Joint work with Weijun Xu (Oxford)

Thu, 02 May 2019

12:00 - 13:00
L4

Lipschitz regularity for orthotropic p-harmonic functions

Chiara Leone
(Università di Napoli Frederico II)
Abstract

We present some regularity results for the gradient of solutions to very degenerate equations, which exhibit a great lack of ellipticity.
In particular we show that local weak solutions of the orthotropic p−harmonic equation are locally Lipschitz, for every $p\geq 2$ and in every dimension.
The results presented in this talk have been obtained in collaboration with Pierre Bousquet (Toulouse), Lorenzo Brasco (Ferrara) and Anna Verde (Napoli).
 

Tue, 28 May 2019
16:00
L5

Emergence of Apparent Horizon in General Relativity

Xinliang An
(National University of Singapore)
Abstract

Black holes are predicted by Einstein's theory of general relativity, and now we have ample observational evidence for their existence. However theoretically there are many unanswered questions about how black holes come into being. In this talk, with tools from hyperbolic PDE, quasilinear elliptic equations and geometric analysis, we will prove that, through a nonlinear focusing effect, initially low-amplitude and diffused gravitational waves can give birth to a trapped (black hole) region in our universe. This result extends the 2008 Christodoulou’s monumental work and it also proves a conjecture of Ashtekar on black-hole thermodynamics

Thu, 20 Jun 2019
16:00
C4

What is Arakelov Geometry?

Esteban Gomezllata Marmolejo
(Oxford University)
Abstract

Arakelov geometry studies schemes X over ℤ, together with the Hermitian complex geometry of X(ℂ).
Most notably, it has been used to give a proof of Mordell's conjecture (Faltings's Theorem) by Paul Vojta; curves of genus greater than 1 have at most finitely many rational points.
In this talk, we'll introduce some of the ideas behind Arakelov theory, and show how many results in Araklev theory are analogous—with additional structure—to classic results such as intersection theory and Riemann Roch.

Wed, 13 Nov 2019

17:00 - 18:00

Oxford Mathematics Newcastle Public Lecture: Vicky Neale - ??????? in Maths?

Vicky Neale
(University of Oxford)
Further Information

[[{"fid":"55737","view_mode":"small_image_100px_h","fields":{"style":"height: 20px; width: 138px;","class":"media-element file-small-image-100px-h","data-delta":"1","format":"small_image_100px_h","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"style":"height: 20px; width: 138px;","class":"media-element file-small-image-100px-h","data-delta":"1","format":"small_image_100px_h","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"style":"height: 20px; width: 138px;","class":"media-element file-small-image-100px-h","data-delta":"1"}}]] in Maths?

Mathematics is the pursuit of truth. But it is a pursuit carried out by human beings with human emotions. Join Vicky as she travels the mathematical rollercoaster.

--

Oxford Mathematics is delighted to announce that in partnership with Northumbria University we shall be hosting our first Newcastle Public Lecture on 13 November. Everybody is welcome as we demonstrate the range, beauty and challenges of mathematics. Vicky Neale, Whitehead Lecturer here in Oxford, will be our speaker. Vicky has given a range of Public Lectures in Oxford and beyond and has made numerous radio and television appearances.

5.00pm-6.00pm
Northumbria University
Lecture Theatre 002, Business & Law Building, City Campus East
Newcastle upon Tyne, NE1 2SU

Please email @email to register

Watch live:
https://facebook.com/OxfordMathematics
https://livestream.com/oxuni/neale

Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Thu, 30 May 2019

12:00 - 13:00
L4

Semiflow selection for the isentropic Euler system (joint work with E. Feireisl & M. Hofmanova)

Dominic Breit
(Heriot Watt University)
Abstract

It is nowadays well understood that the multidimensional isentropic Euler system is desperately ill–posed. Even certain smooth initial data give rise to infinitely many solutions and all available selection criteria fail to ensure both global existence and uniqueness. We propose a different approach to well–posedness of this system based on ideas from the theory of Markov semigroups: we show the existence of a Borel measurable solution semiflow. To this end, we introduce a notion of dissipative solution which is understood as time dependent trajectories of the basic state variables - the mass density, the linear momentum, and the energy - in a suitable phase space. The underlying system of PDEs is satisfied in a generalized sense. The solution semiflow enjoys the standard semigroup property and the solutions coincide with the strong solutions as long as the latter exist. Moreover, they minimize the energy (maximize the energy dissipation) among all dissipative solutions.

Thu, 09 May 2019

11:00 - 12:00
L4

Finite element exterior calculus with smoother finite element spaces

Johnny Guzmán
(Brown University)
Abstract

The finite element exterior calculus is a powerful approach to study many problems under the same lens. The canonical finite element spaces (see Arnold, Falk and Winther) are tied together with an exact sequence and have the required smoothness to define the exterior derivatives weakly. However, some applications require spaces that are more smooth (e.g. plate bending problems, incompressible flows). In this talk we will discuss some recent results in developing finite element spaceson simplicial triangulations with more smoothness, that also fit in an exact sequence. This is joint work with Guosheng Fu, Anna Lischke and Michael Neilan.

Thu, 23 May 2019

12:00 - 13:00
L4

Fractional wave equations

Ljubica Oparnica
(University of Novi Sad)
Abstract

The classical wave equation is derived from the system of three equations: The equation of motion of a (one-dimensional) deformable body, the Hook law as a constitutive equation, and the  strain measure, and describes wave propagation in elastic media. 
Fractional wave equations describe wave phenomena when viscoelasticity of a material or non-local effects of a material comes into an account. For waves in viscoelastic media, instead of Hook's law, a constitutive equation for viscoelastic body,  for example, Fractional Zener model or distributed order model of viscoelastic body, is used. To consider non-local effects of a media, one may replace classical strain measure by non-local strain measure. There are other constitutive equations and other ways to describe non-local effects which will be discussed within the talk.  
The system of three equations subject to initial conditions, initial displacement and initial velocity, is equivalent to one single equation, called fractional wave equation. Using different models for constitutive equations, and non-local measures, different fractional wave equations are obtained. After derivation of such equations, existence and uniqueness of their solution in the spaces of distributions is proved by the use of Laplace and Fourier transforms as main tool. Plots of solutions are presented. For some of derived equations microlocal analysis of the solution is conducted. 

Tue, 04 Jun 2019

12:00 - 13:00
C4

Quantifying structural and dynamical high-order statistical effects via multivariate information theory

Fernando Rosas
(Imperial College London)
Further Information


Fernando Rosas received the B.A. degree in music composition and philosophy, the B.Sc. degree in mathematics, and the M.S. and Ph.D. degrees in engineering sciences from the Pontifícia Universidad Católica de Chile. He is currently a Marie Sklodowska-Curie Research Fellow in the Department of Mathematics and the Department of Electronic Engineering at Imperial College London. Previously, he worked as a Postdoctoral Researcher at the Department of Electrical Engineering of KU Leuven, and as Research Fellow at the Department of Electrical Engineering of National Taiwan University. His research interests lie in the interface between information theory, complexity science and computational neuroscience.
 

Abstract


Complexity Science aims to understand what is that makes some systems to be "more than the sum of their parts". A natural first step to address this issue is to study networks of pairwise interactions, which have been done with great success in many disciplines -- to the extend that many people today identify Complexity Science with network analysis. In contrast, multivariate complexity provides a vast and mostly unexplored territory. As a matter of fact, the "modes of interdependency" that can exist between three or more variables are often nontrivial, poorly understood and, yet, are paramount for our understanding of complex systems in general, and emergence in particular. 
In this talk we present an information-theoretic framework to analyse high-order correlations, i.e. statistical dependencies that exist between groups of variables that cannot be reduced to pairwise interactions. Following the spirit of information theory, our approach is data-driven and model-agnostic, being applicable to discrete, continuous, and categorical data. We review the evolution of related ideas in the context of theoretical neuroscience, and discuss the most prominent extensions of information-theoretic metrics to multivariate settings. Then, we introduce the O-information, a novel metric that quantify various structural (i.e. synchronous) high-order effects. Finally, we provide a critical discussion on the framework of Integrated Information Theory (IIT), which suggests an approach to extend the analysis to dynamical settings. To illustrate the presented methods, we show how the analysis of high-order correlations can reveal critical structures in various scenarios, including cellular automata, Baroque music scores, and various EEG datasets.


References:
[1] F. Rosas, P.A. Mediano, M. Gastpar and H.J. Jensen, ``Quantifying High-order Interdependencies via Multivariate Extensions of the Mutual Information'', submitted to PRE, under review.
https://arxiv.org/abs/1902.11239
[2] F. Rosas, P.A. Mediano, M. Ugarte and H.J. Jensen, ``An information-theoretic approach to self-organisation: Emergence of complex interdependencies in coupled dynamical systems'', in Entropy, vol. 20 no. 10: 793, pp.1-25, Sept. 2018.
https://www.mdpi.com/1099-4300/20/10/793

 

Subscribe to