Tue, 19 Feb 2019

14:30 - 15:00
L3

Univariate and Multivariate Polynomials in Numerical Analysis

Lloyd N. Trefethen
(Oxford)
Abstract

We begin by reviewing numerical methods for problems in one variable and find that univariate polynomials are the starting point for most of them.  A similar review in several variables, however, reveals that multivariate polynomials are not so important.  Why?  On the other hand in pure mathematics, the field of algebraic geometry is precisely the study of multivariate polynomials.  Why?

The CDT Mathematics of Random Systems offers a 4-year comprehensive training programme at the frontier of scientific research in Probability, Stochastic Analysis, Stochastic Modelling, stochastic computational methods and applications in physics, finance, biology, healthcare and data science.
Wed, 06 Feb 2019
11:00
N3.12

RSK Insertion and Symmetric Polynomials

Adam Keilthy
(University of Oxford)
Abstract

Young diagrams frequently appear in the study of partitions and representations of the symmetric group. By filling these diagrams with numbers, we obtain Young tableau, combinatorial objects onto which we can define the structure of a monoid via insertion algorithms. We will explore this structure and it's connection to a basis of the ring of symmetric polynomials. If we have time, we will mention alternative monoid structures and their corresponding bases.

Here you can explore profiles and career destinations of the course alumni.
Tue, 19 Feb 2019
12:00
L4

Mysteries of isolated horizons

Jerzy Lewandowski
(University of Warsaw)
Abstract

Mysteries of isolated horizons: the Near Horizon Geometry equation, geometric characterizations of the non-extremal Kerr horizon, spacetimes foliated by non-expanding horizons.

3-dimensional null surfaces  that are  Killing horizons to the second order  are  considered. They are embedded in 4-dimensional spacetimes that satisfy the vacuum Einstein equations with arbitrary cosmological constant. Internal geometry of 2-dimensional cross sections of  the horizons  consists of induced metric tensor and a rotation 1-form potential. It is subject to the type D equation. The equation is interesting from the both, mathematical and physical points of view. Mathematically it  involves  geometry, holomorphic structures and algebraic topology.  Physically, the equation knows the secrete of black holes: the only  axisymmetric solutions on topological sphere  correspond  to the the Kerr / Kerr-de Sitter / Kerr-anti-de-Sitter non-extremal black holes or to the near horizon limit  of the extremal ones.  In the case of bifurcated  horizons the type D equation implies another spacial  symmetry. In this way the axial symmetry may be ensured without the rigidity theorem. The type D equation does not allow rotating horizons of topology different then that of the  sphere (or its quotient). That completes a new local non-her theorem. The type D equation is also  an integrability condition for the  Near Horizon Geometry equation and leads to new results on the solution existence issue.
 

Thu, 02 May 2019
16:00
C4

The Structure and Dimension of Multiplicative Preprojective Algebras

Daniel Kaplan
((Imperial College, London))
Abstract

Multiplicative preprojective algebras (MPAs) were originally defined by Crawley-Boevey and Shaw to encode solutions of the Deligne-Simpson problem as irreducible representations. 
MPAs have recently appeared in the literature from different perspectives including Fukaya categories of plumbed cotangent bundles (Etgü and Lekili) and, similarly, microlocal sheaves 
on rational curves (Bezrukavnikov and Kapronov.) After some motivation, I'll suggest a purely algebraic approach to study these algebras. Namely, I'll outline a proof that MPAs are 
2-Calabi-Yau if Q contains a cycle and an inductive argument to reduce to the case of the cycle itself.

Thu, 21 Feb 2019

16:00 - 17:00
L6

GCD sums and sum-product estimates

Aled Walker
(University of Cambridge)
Abstract


When S is a finite set of natural numbers, a GCD-sum is a particular kind of double-sum over the elements of S, and they arise naturally in several settings. In particular, these sums play a role when one studies the local statistics of point sequences on the unit circle. There are known upper bounds for the size of a GCD-sum in terms of the size of the set S, most recently due to de la Bretèche and Tenenbaum, and these bounds are sharp. Yet the known examples of sets S for which the GCD-sum over S provides a matching lower bound all possess strong multiplicative structure, whereas in applications the set S often comes with additive structure. In this talk I will describe recent joint work with Thomas Bloom in which we apply an estimate from sum-product theory to prove a much stronger upper bound on a GCD-sum over an additively structured set. I will also describe an application of this improvement to the study of the distribution of points on the unit circle, with a further application to arbitrary infinite subsets of squares. 

Measurement of Atmospheric Tau Neutrino Appearance with IceCube DeepCore
Aartsen, M Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Altmann, D Andeen, K Anderson, T Ansseau, I Anton, G Argüelles, C Auffenberg, J Axani, S Backes, P Bagherpour, H Bai, X Barbano, A Barwick, S Baum, V Bay, R Beatty, J Becker, K Tjus, J BenZvi, S Berley, D Bernardini, E Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Bohm, C Börner, M Böser, S Botner, O Bourbeau, E Bourbeau, J Bradascio, F Braun, J Bretz, H Bron, S Brostean-Kaiser, J Burgman, A Busse, R Carver, T Chen, C Cheung, E Chirkin, D Clark, K Classen, L Collin, G Conrad, J Coppin, P Correa, P Cowen, D Cross, R Dave, P André, J Clercq, C DeLaunay, J Dembinski, H Deoskar, K Ridder, S Desiati, P Vries, K Wasseige, G With, M DeYoung, T az-Vélez, J Dujmovic, H Dunkman, M Dvorak, E Eberhardt, B Ehrhardt, T Eller, P Evenson, P Fahey, S Fazely, A Felde, J Filimonov, K Finley, C Franckowiak, A Friedman, E Fritz, A Gaisser, T Gallagher, J Ganster, E Garrappa, S Gerhardt, L Ghorbani, K Glauch, T Glüsenkamp, T Goldschmidt, A Gonzalez, J Grant, D Griffith, Z Gündüz, M Haack, C Hallgren, A Halve, L Halzen, F Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Henningsen, F Hickford, S Hignight, J Hill, G Hoffman, K Hoffmann, R Hoinka, T Hokanson-Fasig, B Hoshina, K Huang, F Huber, M Hultqvist, K Hünnefeld, M Hussain, R In, S Iovine, N Ishihara, A Jacobi, E Japaridze, G Jeong, M Jero, K Jones, B Kalaczynski, P Kang, W Kappes, A Kappesser, D Karg, T Karl, M Karle, A Katz, U Kauer, M Keivani, A Kelley, J Kheirandish, A Kim, J Kintscher, T Kiryluk, J Kittler, T Klein, S Koirala, R Kolanoski, H Köpke, L Kopper, C Kopper, S Koskinen, D Kowalski, M Krings, K Krückl, G Kulacz, N Kunwar, S Kurahashi, N Kyriacou, A Labare, M Lanfranchi, J Larson, M Lauber, F Lazar, J Leonard, K Leuermann, M Liu, Q Lohfink, E Mariscal, C Lu, L Lünemann, J Luszczak, W Madsen, J Maggi, G Mahn, K Makino, Y Mallot, K Mancina, S Mariş, I Maruyama, R Mase, K Maunu, R Meagher, K Medici, M Medina, A Meier, M Meighen-Berger, S Menne, T Merino, G Meures, T Miarecki, S Micallef, J Momenté, G Montaruli, T Moore, R Moulai, M Nagai, R Nahnhauer, R Nakarmi, P Naumann, U Neer, G Niederhausen, H Nowicki, S Nygren, D Pollmann, A Olivas, A O'Murchadha, A O'Sullivan, E Palczewski, T Pandya, H Pankova, D Park, N Peiffer, P Heros, C Pieloth, D Pinat, E Pizzuto, A Plum, M Price, P Przybylski, G Raab, C Raissi, A Rameez, M Rauch, L Rawlins, K Rea, I Reimann, R Relethford, B Renzi, G Resconi, E Rhode, W Richman, M Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Rysewyk, D Safa, I Herrera, S Sandrock, A Sandroos, J Santander, M Sarkar, S Satalecka, K Schaufel, M Schlunder, P Schmidt, T Schneider, A Schneider, J Schumacher, L Sclafani, S Seckel, D Seunarine, S Silva, M Snihur, R Soedingrekso, J Soldin, D Song, M Spiczak, G Spiering, C Stachurska, J Stamatikos, M Stanev, T Stasik, A Stein, R Stettner, J Steuer, A Stezelberger, T Stokstad, R Stößl, A Strotjohann, N Stuttard, T Sullivan, G Sutherland, M Taboada, I Tenholt, F Ter-Antonyan, S Terliuk, A Tilav, S Tomankova, L Tönnis, C Toscano, S Tosi, D Tselengidou, M Tung, C Turcati, A Turcotte, R Turley, C Ty, B Unger, E Elorrieta, M Usner, M Vandenbroucke, J Driessche, W Eijk, D Eijndhoven, N Vanheule, S Santen, J Vraeghe, M Walck, C Wallace, A Wallraff, M Wandkowsky, N Watson, T Weaver, C Weiss, M Weldert, J Wendt, C Werthebach, J Westerhoff, S Whelan, B Whitehorn, N Wiebe, K Wiebusch, C Wille, L Williams, D Wills, L Wolf, M Wood, J Wood, T Woschnagg, K Wrede, G Xu, D Xu, X Xu, Y Yanez, J Yodh, G Yoshida, S Yuan, T Physical Review D, Particles and fields http://arxiv.org/abs/1901.05366v1
Subscribe to