15:30
Explicit orders associated with terminal 3-fold singularities
Abstract
Let $X_0 $ be a rational surface with a cyclic quotient singularity $(1,a)/r$. Kawamata constructed a remarkable vector bundle $F_0$ on $X_0$ such that the finite-dimensional algebra End$(F_0)$ "absorbs'' the singularity of $X_0$ in a categorical sense. If we deform over an irreducible component of the versal deformation space of $X_0$ (as described by Kollár and Shepherd-Barron), the vector bundle $F_0$ also deforms to a vector bundle $F$. These results were established using abstract methods of birational geometry, making the explicit computation of the family of algebras challenging. We will utilise homological mirror symmetry to compute End$(F)$ explicitly in a certain bulk-deformed Fukaya category. In the case of a $Q$-Gorenstein smoothing, this algebra End$(F)$ is a matrix order over $k[t]$ and "absorbs" the singularity of the corresponding terminal 3-fold singularity. This is based on joint work with Jenia Tevelev.