Wed, 22 Oct 2025

14:30 - 15:30
N3.12

Mathematrix Book Club

(Mathematrix)
Abstract

Join us for the inaugural session of Mathematrix book club! Have you heard that office workplaces often have the thermostat set at a temperature that is too cold for women to work comfortably? This month we will be discussing the academic articles behind concepts that often come up in conversations about gender inequality in the workplace. The goal of book club is to develop an evidence-based understanding of diversity in mathematics and academia. 

 

Thu, 23 Oct 2025

12:00 - 12:30
Lecture Room 4

Stabilisation of the Navier⁠–Stokes equations on under-resolved meshes via enstrophy preservation

Boris Andrews
(Mathematical Institute (University of Oxford))
Abstract

The typical energy estimate for the Navier-Stokes equations provides a bound for the gradient of the velocity; energy-stable numerical methods that preserve this estimate preserve this bound. However, the bound scales with the Reynolds number (Re) causing solutions to be numerically unstable (i.e. exhibit spurious oscillations) on under-resolved meshes. The dissipation of enstrophy on the other hand provides, in the transient 2D case, a bound for the gradient that is independent of Re.

 

We propose a finite-element integrator for the Navier-Stokes equations that preserves the evolution of both the energy and enstrophy, implying gradient bounds that are, in the 2D case, independent of Re. Our scheme is a mixed velocity-vorticity discretisation, making use of a discrete Stokes complex. While we introduce an auxiliary vorticity in the discretisation, the energy- and enstrophy-stability results both hold on the primal variable, the velocity; our scheme thus exhibits greater numerical stability at large Re than traditional methods.

 

We conclude with a demonstration of numerical results, and a discussion of the existence and uniqueness of solutions.

S-algebra in gauge theory: twistor, spacetime and holographic perspectives
Kmec, A Mason, L Ruzziconi, R Sharma, A Classical and Quantum Gravity volume 42 issue 19 195008 (03 Oct 2025)
Uncovering flow and deformation regimes in the coupled fluid-solid vestibular system
Chico Vazquez, J Moulton, D Vella, D Journal of Fluid Mechanics
Motility and rotation of multi-timescale microswimmers in linear background flows
Gaffney, E Ishimoto, K Walker, B Journal of Fluid Mechanics
Wed, 15 Oct 2025
15:00
L5

The Polynomial Conjecture for Monomial Representations of Exponential Lie Groups

Ali Baklouti
(University of SFAX Tunisia)
Abstract

Let \( G = \exp(\mathfrak{g}) \) be a connected, simply connected nilpotent Lie group with Lie algebra \( \mathfrak{g} \), and let \( H = \exp(\mathfrak{h}) \) be a closed subgroup with Lie algebra \( \mathfrak{h} \). Consider a unitary character \( \chi \) of \( H \), given by \(\chi(\exp X) = \chi_{f}(\exp X) = e^{i f(X)}, \  X \in \mathfrak{h}, \) for some \( f \in \mathfrak{g}^{\ast} \). Let \( \tau = \operatorname{Ind}_{H}^{G} \chi \) denote the monomial representation of \( G \) induced from \( \chi \).

The object of interest is the algebra \( D_{\tau}(G/H) \) of \( G \)-invariant differential operators acting on the homogeneous line bundle associated with the data \( (G, H, \chi) \). Under the assumption that \( \tau \) has finite multiplicities, it is known that \( D_{\tau}(G/H) \) is commutative.

In this talk, I will discuss the Polynomial Conjecture for the representation \( \tau \), which asserts that the algebra \( D_{\tau}(G/H) \) is isomorphic to  
\(\mathbb{C}[\Gamma_{\tau}]^{H}\),  the algebra of \( H \)-invariant polynomial functions on \( \Gamma_{\tau} \). Here, \( \Gamma_{\tau} = f + \mathfrak{h}^{\perp} \) denotes the affine subspace of \( \mathfrak{g}^{\ast} \).

I will present recent advances toward proving this conjecture, with a particular emphasis on Duflo's Polynomial Conjecture concerning the Poisson center of \( \Gamma_{\tau} \). Furthermore, I will discuss the case where \( \tau \) has discrete-type multiplicities in the exponential setting, shedding light on a counterexample to Duflo's conjecture.
 

A mathematical model for optimal breakaways in cycling: balancing energy expenditure and crash risk
Griffiths, I Chico-Vazquez, J Royal Society Open Science
Tue, 30 Sep 2025
15:00
C3

Spacetime reconstruction and measured Lorentz-Gromov-Hausdorff convergence

Mathias Braun
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract

We present Gromov's celebrated reconstruction theorem in Lorentzian geometry and show two applications. First, we introduce several notions of convergence of (isomorphism classes of) normalized bounded Lorentzian metric measure spaces, for which we describe several fundamental properties. Second, we state a version within the spacetime reconstruction problem from quantum gravity. Partly in collaboration with Clemens Sämann (University of Vienna).

Subscribe to