Tue, 10 Mar 2015

14:30 - 15:00
L5

Automatic reformulation of higher order ODEs to coupled systems of first order equations

Asgeir Birkisson
(University of Oxford)
Abstract

Many numerical solvers of ordinary differential equations require problems to be posed as a system of first order differential equations. This means that if one wishes to solve higher order problems, the system have to be rewritten, which is a cumbersome and error-prone process. This talk presents a technique for automatically doing such reformulations.

Tue, 10 Mar 2015

14:00 - 14:30
L5

Computing choreographies

Hadrien Montanelli
(University of Oxford)
Abstract

Choreographies are periodic solutions of the n-body problem in which all of the bodies have unit masses, share a common orbit and are uniformly spread along it. In this talk, I will present an algorithm for numerical computation and stability analysis of choreographies.  It is based on approximations by trigonometric polynomials, minimization of the action functional using a closed-form expression of the gradient, quasi-Newton methods, automatic differentiation and Floquet stability analysis.

Wed, 25 Feb 2015

11:00 - 12:30

Derived Categories of Sheaves on Smooth Projective Varieties in S2.37

Jack Kelly
(Oxford)
Abstract

In this talk we will introduce the (bounded) derived category of coherent sheaves on a smooth projective variety X, and explain how the geometry of X endows this category with a very rigid structure. In particular we will give an overview of a theorem of Orlov which states that any sufficiently ‘nice’ functor between such categories must be Fourier-Mukai.

Mon, 11 May 2015
15:45
L6

The Triangulation Conjecture

Ciprian Manolescu
(UCLA)
Abstract

The triangulation conjecture stated that any n-dimensional topological manifold is homeomorphic to a simplicial complex. It is true in dimensions at most 3, but false in dimension 4 by the work of Casson and Freedman. In this talk I will explain the proof that the conjecture is also false in higher dimensions. This result is based on previous work of Galewski-Stern and Matumoto, who reduced the problem to a question in low dimensions (the existence of elements of order 2 and Rokhlin invariant one in the 3-dimensional homology cobordism group). The low-dimensional question can be answered in the negative using a variant of Floer homology, Pin(2)-equivariant Seiberg-Witten Floer homology. At the end I will also discuss a related version of Heegaard Floer homology, which is more computable.

Mon, 27 Apr 2015
15:45
L6

On Cayley graphs of relatively hyperbolic groups

Laura Ciobanu
(Neuchatel)
Abstract

In this talk I will show how given a finitely generated relatively hyperbolic group G, one can construct a finite generating set X of G for which (G,X) has a number of metric properties, provided that the parabolic subgroups have these properties. I will discuss the applications of these properties to the growth series, language of geodesics, biautomatic structures and conjugacy problem. This is joint work with Yago Antolin.

Thu, 11 Jun 2015

16:00 - 17:00
L6

Moduli stacks of potentially Barsotti-Tate Galois representations

Toby Gee
(Imperial College)
Abstract

I will discuss joint work with Ana Caraiani, Matthew Emerton and David Savitt, in which we construct moduli stacks of two-dimensional potentially Barsotti-Tate Galois representations, and study the relationship of their geometry to the weight part of Serre's conjecture.

Fri, 20 Mar 2015

10:00 - 11:00
L6

Saint-Gobain

Paul Leplay
Abstract

For this workshop, we have identified two subject of interest for us in the field of particle technology, one the wet granulation is a size enlargement process of converting small-diameter solid particles (typically powders) into larger-diameter agglomerates to generate a specific size, the other one the mechanical centrifugal air classifier is employed when the particle size that you need to separate is too fine to screen.

Subscribe to