15:30
Uniqueness of gauge covariant renormalisation of stochastic 3D Yang-Mills
Abstract
In this talk, I will describe a family of observables for 3D quantum Yang-Mills theory based on regularising connections with the YM heat flow. I will describe how these observables can be used to show that there is a unique renormalisation of the stochastic quantisation equation of YM in 3D that preserves gauge symmetries. This complements a recent result on the existence of such a renormalisation. Based on joint work with Hao Shen.
Past Papers can be found on the Mathematical Institute website here.
One-Day Meeting in Combinatorics
The speakers are Yuval Wigderson (ETH Zurich), Liana Yepremyan (Emory), Dan Kráľ (Leipzig University and MPI-MiS), Marthe Bonamy (Bordeaux), and Agelos Georgakopoulos (Warwick). Please see the event website for further details including titles, abstracts, and timings. Anyone interested is welcome to attend, and no registration is required.
Optimally packing Hamilton cycles in random directed digraphs
Abstract
At most how many edge-disjoint Hamilton cycles does a given directed graph contain? It is easy to see that one cannot pack more than the minimum in-degree or the minimum out-degree of the digraph. We show that in the random directed graph $D(n,p)$ one can pack precisely this many edge-disjoint Hamilton cycles, with high probability, given that $p$ is at least the Hamiltonicity threshold, up to a polylog factor.
Based on a joint work with Asaf Ferber.