Tue, 14 Oct 2025
13:00
L2

SymTFTs for continuous spacetime symmetries

Nicola Dondi
(ICTP)
Abstract

Symmetry Topological Field Theories (SymTFTs) are topological field theories that encode the symmetry structure of global symmetries in terms of a theory in one higher dimension. While SymTFTs for internal (global) symmetries have been highly successful in characterizing symmetry aspects in the last few years, a corresponding framework for spacetime symmetries remains unexplored. We propose an extension of the SymTFT framework to include spacetime symmetries. In particular, we propose a SymTFT for the conformal symmetry in various spacetime dimensions. We demonstrate that certain BF-type theories, closely related to topological gravity theories, possess the correct topological operator content and boundary conditions to realize the conformal algebra of conformal field theories living on boundaries. As an application, we show how effective theories with spontaneously broken conformal symmetry can be derived from the SymTFT, and we elucidate how conformal anomalies can be reproduced in the presence of even-dimensional boundaries.
 

Mon, 01 Dec 2025
15:30
L5

Kazhdan‘s property T, waist inequalities, and some speculations

Roman Sauer
(Karlsruhe Institute of Technology)
Abstract

I will discuss a uniform waist inequality in codimension 2 for the family of finite covers of a Riemannian manifold whose fundamental group has Kazhdan‘s property T. I will describe a general strategy to prove waist inequalities based on a higher property T for Banach spaces. The general strategy can be implemented in codimension 2 but is conjectural in higher codimension. We speculate about the situation for lattices in semisimple Lie groups. Based on joint work with Uri Bader

Mon, 24 Nov 2025
15:30
L5

Bass notes of closed arithmetic hyperbolic surfaces

Bram Petri
(IMJ-PRG/Sorbonne Université)
Abstract

The spectral gap (or bass note) of a closed hyperbolic surface is the smallest non-zero eigenvalue of its Laplacian. This invariant plays an important role in many parts of hyperbolic geometry. In this talk, I will speak about joint work with Will Hide on the question of which numbers can appear as spectral gaps of closed arithmetic hyperbolic surfaces.


 

Mon, 17 Nov 2025
15:30
L5

On the congruence subgroup property for mapping class groups

Henry Wilton
(Cambridge University)
Abstract

I will relate two notorious open questions in low-dimensional topology.  The first asks whether every hyperbolic group is residually finite. The second, the congruence subgroup property, relates the finite-index subgroups of mapping class groups to the topology of the underlying surface. I will explain why, if every hyperbolic group is residually finite, then mapping class groups enjoy the congruence subgroup property. Time permitting, I may give some further applications to the question of whether hyperbolic 3-manifolds are determined by the finite quotients of their fundamental groups.

Mon, 10 Nov 2025
15:30
L5

Ribbon concordance and fibered predecessors

Steven Sivek
(Imperial)
Abstract
Ribbon concordance defines an interesting relation on knots.  In his initial work on the topic, Gordon asked whether it is a partial order, and this question was open for over 40 years until Agol answered it affirmatively in 2022.  However, we still don’t know many basic facts about this partial order: for example, does any infinite chain of ribbon concordances $\dots \leq K_3 \leq K_2 \leq K_1$ eventually stabilize?  Even better, if we fix a knot $K$ in the 3-sphere, are there only finitely many knots that are ribbon concordant to $K$?  I’ll talk about joint work with John Baldwin toward these questions, in which we use tools from both Heegaard Floer homology and hyperbolic geometry to say that at the very least, there are only finitely many fibered hyperbolic knots ribbon concordant to $K$.

 
Mon, 03 Nov 2025
15:30
L5

Prefactorisation algebras for superselection sectors and topological order

Pieter Naaijkens
(Cardiff University)
Abstract
In this talk I will explain the basics of topological order and superselection sector theory. The latter assigns a braided monoidal category to 2D topologically ordered quantum spin systems. The focus of this talk will be how this structure can be understood in terms of locally constant prefactorisation algebras over the category of cone-shaped regions. This naturally leads to a geometric origin for the braiding on the category of superselection sectors. Based on joint work with Marco Benini, Victor Carmona and Alexander Schenkel (arXiv:2505.07960).

 
Mon, 27 Oct 2025
15:30
L5

Goodwillie’s calculus of functors and the chain rule

Max Blans
(Oxford University)
Abstract

 

In the 1990s, Goodwillie developed a theory of calculus for homotopical functors. His idea was to approximate a functor by a tower of ‘polynomial functors’, similar to how one approximates a function by its Taylor series. The role of linear polynomials is played by functors that behave like homology theories, in the sense that there is a Mayer-Vietoris sequence computing their homotopy groups. As such, the Goodwillie tower interpolates between stable and unstable homotopy theory. The theory has application to the computation of the homotopy groups of spheres, higher algebra, and algebraic K-theory. In my talk, I will give an introduction to this topic. In particular, I will explain that Goodwillie's calculus reveals a deep connection between the homotopy theory of spaces and Lie algebras and how this is related to a chain rule for the derivatives of functors.
 

 

 
Mon, 20 Oct 2025
15:30
L5

Skein modules are holonomic 

David Jordan
(University of Edinburgh)
Abstract
Abstract:  Skein modules capture vector spaces of line operators in 3D Chern-Simons, equivalently line operators constrained to a 3-dimensional boundary in the Kapustin-Witten twist of 4D N=4 gauge theory.  They have an elementary mathemical definition via representation theory of quantum groups.
 
In recent work with Iordanis Romaidis we proved that when the quantum parameter is generic, the skein module of a 3-manifold is finitely generated relative to the skein algebra of its boundary and that moreover the resulting singular support variety is Lagrangian, hence that skein modules are holonomic. Our results confirm and strengthen a conjecture of Detcherry, and imply a conjecture of Frohman, Gelca and LoFaro from 2002 (the latter independently established this year by Beletti and Detcherry using other methods).
 
In the talk I will give an outline of the key ingredients of the proof, which recreate elements of the classical theory of differential operators in the skein setting. 

 
Mon, 13 Oct 2025
15:30
L5

Virtual fibring and Poincaré duality

Dawid Kielak
(Mathematical Institute Oxford)
Abstract

I will talk about the problem of recognising when a manifold admits a finite cover that fibres over the circle, with emphasis on the case of hyperbolic manifolds in odd dimensions. I will survey the state-of-art, and discuss the role that group theory plays in the problem. Finally, I will discuss a recent result that sheds light on the analogous group-theoretic problem, that is, virtual algebraic fibring of Poincaré-duality groups. The final theorem is joint with Sam Fisher and Giovanni Italiano.

Subscribe to