Thu, 30 May 2024

12:00 - 13:00
L3

Patterned illumination for complex spatio-temporal morphing of LCE sheets

John Biggins
(University of Cambridge)
Further Information

Biography

John Biggins read natural sciences at Cambridge University. He specialized in experimental and theoretical physics, and was the top ranked student in his cohort. He then did a PhD in the theory of condensed matter group under the supervision of Prof Mark Warner FRS, working on the exotic elasticity of a new phase of soft matter known as a liquid crystal elastomer (LCE). During his PhD he made an extended visit to Caltech to work with Prof Kaushik Bhattacharya on analogies between LCEs and shape memory alloys.

After his PhD, John won an 1851 Royal Commission Fellowship and traveled to Harvard to work with Prof L. Mahadevan on instabilities in soft solids and biological tissues, including creasing, fingering and brain folding. He then returned to Cambridge, first as Walter Scott Research Fellow at Trinity Hall and then as an early career lecturer in the tcm group at the Cavendish Laboratory. During this time, he explained the viral youtube phenomena of the chain fountain, and explored how surface tension can sculpt soft solids, leading to a solid analogue of the Plateau–Rayleigh instability. He also taught first year oscillations, and a third year course "theoretical physics 1."

In 2017, John was appointed to an Assistant Professorship of applied mechanics in Cambridge Engineering Department, where he teaches mechanics and variational methods. In 2019 he won a UKRI Future Leaders Fellowship on "Liquid Crystal Elastomers, from new materials via new mechanics to new machines." This grant added an exciting experimental component to the group, and underpins our current focus on using LCEs as artificial muscles in soft mechanical devices.

 

from http://www.eng.cam.ac.uk/profiles/jsb56 

Abstract

Liquid crystal elastomers are rubbery solids containing molecular LC rods that align along a common director. On heating, the alignment is disrupted, leading to a substantial (~50%) contraction along the director.  In recent years, there has been a great deal of interest in fabrication LCE sheets with a bespoke alignment pattern. On heating, these patterns generate  corresponding patterns of contraction that can morph a sheet into a bespoke curved surface such as a cone or face. Moreover, LCEs can also be activated by light, either photothermally or photochemically, leading to similarly large contractions. Stimulation by light also introduces an important new possibility: using spatio-temporal patterns of illumination to morph a single LCE sample into a range of different surfaces. Such stimulation can enable non-reciprocal actuation for viscous swimming or pumping, and control over the whole path taken by the sheet through shape-space rather than just the final destination. In this talk, I will start by with an experimental example of a spatio-temporal pattern of illumination being used to actuate an LCE peristaltic pump. I will then introduce a second set of experiments, in which a monodomain sheet morphs first into a cone, an anti-cone and then an array of cones upon exposure to different patterns of illumination. Finally, I will then discuss the general problem of how to choose a pattern of illumination to morph a director-patterned sheet into an arbitrary surface, first analytically for axisymmetric cases, then numerically for low symmetry cases. This last study exceeds our current experimental capacity, but highlights how, with full spatio-temporal control over the stimulation magnitude, one can choreograph an LCE sheet to undergo almost any pattern of morphing.

Thu, 25 Apr 2024

12:00 - 13:00
L3

Static friction models, buckling and lift-off for a rod deforming on a cylinder

Rehan Shah
(Queen Mary, University of London)
Further Information

Dr. Rehan Shah, Lecturer (Assistant Professor) in Mathematics and Engineering Education, Queen Mary University of London

Abstract

We develop a comprehensive geometrically-exact theory for an end-loaded elastic rod constrained to deform on a cylindrical surface. By viewing the rod-cylinder system as a special case of an elastic braid, we are able to obtain all forces and moments imparted by the deforming rod to the cylinder as well as all contact reactions. This framework allows us to give a complete treatment of static friction consistent with force and moment balance. In addition to the commonly considered model of hard frictionless contact, we analyse two friction models in which the rod, possibly with intrinsic curvature, experiences either lateral or tangential friction. As applications of the theory we study buckling of the constrained rod under compressive and torsional loads, finding critical loads to depend on Coulomb-like friction parameters, as well as the tendency of the rod to lift off the cylinder under further loading. The cylinder can also have arbitrary orientation relative to the direction of gravity. The cases of a horizontal and vertical cylinder, with gravity having only a lateral or axial component, are amenable to exact analysis, while numerical results map out the transition in buckling mechanism between the two extremes. Weight has a stabilising effect for near-horizontal cylinders, while for near-vertical cylinders it introduces the possibility of buckling purely due to self-weight. Our results are relevant for many engineering and medical applications in which a slender structure winds inside or outside a cylindrical boundary.


 

Banner for lecture with details against a backdrop of braids

What do maypole dancing, grocery delivery, and the quadratic formula all have in common? The answer is: braids! In this Oxford Mathematics Public Lecture, Tara will explore how the ancient art of weaving strands together manifests itself in a variety of modern settings, both within mathematics and in our wider culture.    

Tue, 02 Jul 2024

15:30 - 16:30
North Lecture Theatre, St John’s College Oxford

Tracial Classification of C*-algebras

Jorge Castillejos Lopez
(UNAM Mexico)
Abstract

The classification of simple, unital, nuclear UCT C*-algebras with finite nuclear dimension can be achieved using an invariant derived from K-theory and tracial information. In this talk, I will present a classification theorem for certain classes of C*-algebras that rely solely on tracial deformations.  

Tue, 11 Jun 2024

16:00 - 17:00
C2

Metric invariants from curvature-like inequalities

Florent Baudier
Abstract

A central theme in the 40-year-old Ribe program is the quest for metric invariants that characterize local properties of Banach spaces. These invariants are usually closely related to the geometry of certain sequences of finite graphs (Hamming cubes, binary trees, diamond graphs...) and provide quantitative bounds on the bi-Lipschitz distortion of those graphs.

A more recent program, deeply influenced by the late Nigel Kalton, has a similar goal but for asymptotic properties instead. In this talk, we will motivate the (asymptotic) notions of infrasup umbel convexity (introduced in collaboration with Chris Gartland (UC San Diego)) and bicone convexity. These asymptotic notions are inspired by the profound work of Lee, Mendel, Naor, and Peres on the (local) notion of Markov convexity and of Eskenazis, Mendel, and Naor on the (local) notion of diamond convexity. 

All these metric invariants share the common feature of being derived from point-configuration inequalities which generalize curvature inequalities.

If time permits we will discuss the values of these invariants for Heisenberg groups.

Tue, 14 May 2024

16:00 - 17:00
C2

Non-isomorphic simple AH algebras with the same Elliott invariant and same radius of comparison

Ilan Hirshberg
(Ben-Gurion University of the Negev)
Abstract

Recently, Elliott, Li, and Niu proved a classification theorem for Villadsen-type algebras using the combination of the Elliott invariant and the radius of comparison, an invariant that was introduced by Toms in order to distinguish between certain non-isomorphic AH algebras with the same Elliott invariant. This might have raised the prospect that the Elliott classification program can be extended beyond the Z-stable case by adding the radius of comparison to the invariant. I will discuss a recent preprint in which we show that this is not the case: we construct an uncountable family of nonisomorphic AH algebras with the same Elliott and same radius of comparison. We can distinguish between them using a finer invariant, which we call the local radius of comparison. This is joint work with N. Christopher Phillips.

Tue, 07 May 2024

16:00 - 17:00
C2

Title: $C^*$ -diagonal of Inductive limits of 1-dimensional Noncommutative CW-complexes

Dolapo Oyetunbi
(University of Ottawa)
Abstract

A $C^*$-diagonal is a certain commutative subalgebra of a $C^∗$ -algebra with a rich structure. Renault and Kumjian showed that finding a $C^*$ -diagonal of a $C^∗$-algebra is equivalent to realizing the $C^*$-algebra via a groupoid. This establishes a close connection between $C^∗$-diagonals and dynamics and allows one to relate the geometric properties of groupoids to the properties of $C^∗$ -diagonals. 

In this talk, I will explore the unique pure state extension property of an Abelian $C^*$-subalgebra of a 1-dim NCCW complex, the approximation of morphisms between two 1-dim NCCW complexes by $C^*$-diagonal preserving morphisms, and the existence of $C^*$-diagonal in inductive limits of certain 1-dim NCCW complexes.

To modulate or to skip: de-escalating PARP inhibitor maintenance therapy in ovarian cancer using adaptive therapy
Strobl, M Martin, A West, J Gallaher, J Robertson-Tessi, M Gatenby, R Wenham, R Maini, P Damaghi, M Anderson, A Cell Systems (20 May 2024)
Generalised Graph Laplacians and Canonical Feynman Integrals with Kinematics
Brown, F Communications in Mathematical Physics volume 405 issue 2 (09 Feb 2024)
Thu, 13 Jun 2024
16:00
L5

The Gross--Kohnen--Zagier theorem via $p$-adic uniformization

Martí Roset Julià
(McGill University)
Abstract

Let $S$ be a set of rational places of odd cardinality containing infinity and a rational prime $p$. We can associate to $S$ a Shimura curve $X$ defined over $\mathbb{Q}$. The Gross--Kohnen--Zagier theorem states that certain generating series of Heegner points of $X$ are modular forms of weight $3/2$ valued in the Jacobian of $X$. We will state this theorem and outline a new approach to proving it using the theory of $p$-adic uniformization and $p$-adic families of modular forms of half-integral weight. This is joint work with Lea Beneish, Henri Darmon, and Lennart Gehrmann.

Subscribe to