Sets that are very large and very small
Abstract
Model companions of fields with no points in hyperbolic varieties
Abstract
This talk is based on a joint work with Vincent Jinhe Ye. I will define various classes of hyperbolic varieties (Broody hyperbolic, algebraically hyperbolic, bounded, groupless) and discuss existence of model companions of classes of fields that exclude them. This is related to moduli spaces of maps to hyperbolic varieties and to the (open) question whether the above mentioned hyperbolicity notions are in fact equivalent.
15:00
Mapping class group orbit closures for non-orientable surfaces
Abstract
The space of measured laminations on a hyperbolic surface is a generalisation of the set of weighted multi curves. The action of the mapping class group on this space is an important tool in the study of the geometry of the surface.
For orientable surfaces, orbit closures are now well-understood and were classified by Lindenstrauss and Mirzakhani. In particular, it is one of the pillars of Mirzakhani’s curve counting theorems.
For non-orientable surfaces, the behaviour of this action is very different and the classification fails. In this talk I will review some of these differences and describe mapping class group orbit closures of (projective) measured laminations for non-orientable surfaces. This is joint work with Erlandsson, Gendulphe and Souto.
15:00
Quasiisometric embeddings of groups into finite products of binary trees
Abstract
If a group quasiisometrically embeds into a finite product of infinite valence trees then a number of things are implied; for example, the group will have finite Assouad-Nagata dimension and finite asymptotic dimension. An even stronger statement is that the group quasiisometrically embeds into a finite product of uniformly bounded valence trees. The research on which groups quasiisometrically embed into finite products of uniformly bounded valence trees is limited, however a notable result of Buyalo, Dranishnikov and Schroeder from 2007 proves that all hyperbolic groups do admit these quasiisometric embeddings. In a recently released preprint, I extend their result to cover groups which are relatively hyperbolic with respect to virtually abelian peripheral subgroups.
This talk will focus on the ideas at the core of Buyalo, Dranishnikov and Schroeder’s result and the extension that I proved, and in particular I will attempt to provide a general framework for upgrading quasiisometric embeddings into infinite valence trees so that they are now quasiisometric embeddings into uniformly bounded valence trees. The central concept is called a diary which I will define.
15:00
Rigidity and automorphisms of group von Neumann algebras
Abstract
I will survey some recent results on rigidity and automorphisms of von Neumann algebras of groups with Kazhdan property (T) obtained in a series of joint papers with I. Chifan, A. Ioana, and B. Sun. Specifically, we show that certain groups, constructed via a group-theoretic version of Dehn filling in 3-manifolds, satisfy several conjectures proposed by A. Connes, V. Jones, and S. Popa. Previously, no nontrivial examples of groups satisfying these conjectures were known. At the core of our approach is the new notion of a wreath-like product of groups, which seems to be of independent interest.
15:00
Extension of Möbius boundary homeomorphisms
Abstract
15:00
Graph products and measure equivalence
Abstract
Measure equivalence was introduced by Gromov as a measure-theoretic analogue to quasi-isometry between finitely generated groups. In this talk I will present measure equivalence classification results for right-angled Artin groups, and more generally graph products. This is based on joint works with Jingyin Huang and with Amandine Escalier.
15:00
Mathematics of magic angles for twisted bilayer graphene.
This is a joint seminar with Random Matrix Theory and Oxford Centre for Nonlinear Partial Differential Equations.
Abstract
Magic angles refer to a remarkable theoretical (Bistritzer--MacDonald, 2011) and experimental (Jarillo-Herrero et al 2018) discovery, that two sheets of graphene twisted by a certain (magic) angle display unusual electronic properties such as superconductivity.
Mathematically, this is related to having flat bands of nontrivial topology for the corresponding periodic Hamiltonian and their existence be shown for the chiral model of twisted bilayer graphene (Tarnopolsky-Kruchkov-Vishwanath, 2019). A spectral characterization of magic angles (Becker--Embree--Wittsten--Z, 2021, Galkowski--Z, 2023) also produces complex values and the distribution of their reciprocals looks remarkably like a distribution of scattering resonances for a two dimensional problem, with the real magic angles corresponding to anti-bound states. I will review various results on that distribution as well as on the properties of the associated eigenstates.
The talk is based on joint works with S Becker, M Embree, J Galkowski, M Hitrik, T Humbert and J Wittsten