Parameter identifiability and model selection for partial differential equation models of cell invasion
Liu, Y Suh, K Maini, P Cohen, D Baker, R Journal of the Royal Society Interface volume 21 (06 Mar 2024)
Fast and accurate randomized algorithms for linear systems and eigenvalue problems
Nakatsukasa, Y Tropp, J SIAM Journal on Matrix Analysis and Applications volume 45 issue 2 1183-1214 (20 Jun 2024)
Thu, 22 Feb 2024

17:00 - 18:00

Sets that are very large and very small

Asaf Karagila (Leeds)
Abstract
We can compare the relative sizes of sets by using injections or (partial) surjections, but without the axiom of choice we cannot prove that every two sets can be compared. We can use the ordinals to define a notion of size which allows us to determine whether a set is "large" or "small" relative to another. The first is defined by the Hartogs number, which is the least ordinal which does not inject into the set; the second is the Lindenbaum number of a set, which is the first ordinal which is not an image of the set. In this talk we will discuss some basic properties of these numbers and some basic historical results. 

 
In a new work with Calliope Ryan-Smith we showed that given any pair of (infinite) cardinals, we can onstruct a symmetric extension in which there is a set whose Hartogs is the smaller and the Lindenbaum is the larger. Moreover, using the techniques of iterated symmetric extensions, we can realise all possible pairs in a single model.

 
This work appears on arXiv: https://arxiv.org/abs/2309.11409
Thu, 08 Feb 2024

11:00 - 12:00
C3

Model companions of fields with no points in hyperbolic varieties

Michal Szachniewicz
(University of Oxford)
Abstract

This talk is based on a joint work with Vincent Jinhe Ye. I will define various classes of hyperbolic varieties (Broody hyperbolic, algebraically hyperbolic, bounded, groupless) and discuss existence of model companions of classes of fields that exclude them. This is related to moduli spaces of maps to hyperbolic varieties and to the (open) question whether the above mentioned hyperbolicity notions are in fact equivalent.

Tue, 11 Jun 2024
15:00
L6

TBD

Motiejus Valiunas
Tue, 04 Jun 2024
15:00
L6

Mapping class group orbit closures for non-orientable surfaces

Irene Pasquinelli
Abstract

The space of measured laminations on a hyperbolic surface is a generalisation of the set of weighted multi curves. The action of the mapping class group on this space is an important tool in the study of the geometry of the surface. 
For orientable surfaces, orbit closures are now well-understood and were classified by Lindenstrauss and Mirzakhani. In particular, it is one of the pillars of Mirzakhani’s curve counting theorems. 
For non-orientable surfaces, the behaviour of this action is very different and the classification fails. In this talk I will review some of these differences and describe mapping class group orbit closures of (projective) measured laminations for non-orientable surfaces. This is joint work with Erlandsson, Gendulphe and Souto.

Tue, 28 May 2024
15:00
L6

Quasiisometric embeddings of groups into finite products of binary trees

Patrick Nairne
Abstract

If a group quasiisometrically embeds into a finite product of infinite valence trees then a number of things are implied; for example, the group will have finite Assouad-Nagata dimension and finite asymptotic dimension. An even stronger statement is that the group quasiisometrically embeds into a finite product of uniformly bounded valence trees. The research on which groups quasiisometrically embed into finite products of uniformly bounded valence trees is limited, however a notable result of Buyalo, Dranishnikov and Schroeder from 2007 proves that all hyperbolic groups do admit these quasiisometric embeddings. In a recently released preprint, I extend their result to cover groups which are relatively hyperbolic with respect to virtually abelian peripheral subgroups. 

This talk will focus on the ideas at the core of Buyalo, Dranishnikov and Schroeder’s result and the extension that I proved, and in particular I will attempt to provide a general framework for upgrading quasiisometric embeddings into infinite valence trees so that they are now quasiisometric embeddings into uniformly bounded valence trees. The central concept is called a diary which I will define. 

Subscribe to