Tue, 05 Mar 2024

16:00 - 17:00
C2

Connes's Bicentralizer Problem

Amine Marrakchi
(ENS Lyons)
Abstract

In the world of von Neumann algebras, the factors that do not have a trace, the so-called type III factors, are the most difficult to study. Some of their key structural properties are still not well-understood. In this talk, I will give a gentle introduction to Connes's Bicentralizer Problem, which is the most important open problem in the theory of type III factors. I will then present some recent progress on this problem and its applications.

Thu, 15 Feb 2024

16:00 - 17:00
C3

Permutation matrices, graph independence over the diagonal, and consequences

Ian Charlesworth
(University of Cardiff)
Abstract

Often, one tries to understand the behaviour of non-commutative random variables or of von Neumann algebras through matricial approximations. In some cases, such as when appealing to the determinant conjecture or investigating the soficity of a group, it is important to find approximations by matrices with good algebraic conditions on their entries (e.g., being integers). On the other hand, the most common tool for generating asymptotic independence -- conjugating with random unitaries -- often destroys such delicate structure.

 I will speak on recent joint work with de Santiago, Hayes, Jekel, Kunnawalkam Elayavalli, and Nelson, where we investigate graph products (an interpolation between free and tensor products) and conjugation of matrix models by large structured random permutations. We show that with careful control of how the permutation matrices are chosen, we can achieve asymptotic graph independence with amalgamation over the diagonal matrices. We are able to use this fine structure to prove that strong $1$-boundedness for a large class of graph product von Neumann algebras follows from the vanishing of the corresponding first $L^2$-Betti number. The main idea here is to show that a version of the determinant conjecture holds as long as the individual algebras have generators with approximations by matrices with entries in the ring of integers of some finite extension of Q satisfying some conditions strongly reminiscent of soficity for groups.

 

Anisotropic Kondo line defect and ODE/IM correspondence
Wu, J SciPost Physics volume 15 issue 6 248 (20 Dec 2023)
Scattering on self-dual Taub-NUT
Mason, L Classical and Quantum Gravity volume 41 (18 Dec 2023)
Thu, 15 Feb 2024

16:00 - 17:00
Virtual

From Lévy's stochastic area formula to universality of affine and polynomial processes via signature SDEs

Christa Cuchiero
(University of Vienna)
Further Information
Abstract

A plethora of stochastic models used in particular in mathematical finance, but also population genetics and physics, stems from the class of affine and polynomial processes. The history of these processes is on the one hand closely connected with the important concept of tractability, that is a substantial reduction of computational efforts due to special structural features, and on the other hand with a unifying framework for a large number of probabilistic models. One early instance in the literature where this unifying affine and polynomial point of view can be applied is Lévy's stochastic area formula. Starting from this example,  we present a guided tour through the main properties and recent results, which lead to signature stochastic differential equations (SDEs). They constitute a large class of stochastic processes, here driven by Brownian motions, whose characteristics are entire or real-analytic functions of their own signature, i.e. of iterated integrals of the process with itself, and allow therefore for a generic path dependence. We show that their prolongation with the corresponding signature is an affine and polynomial process taking values in subsets of group-like elements of the extended tensor algebra. Signature SDEs are thus a class of stochastic processes, which is universal within Itô processes with path-dependent characteristics and which allows - due to the affine theory - for a relatively explicit characterization of the Fourier-Laplace transform and hence the full law on path space.

Thu, 25 Jan 2024

16:00 - 17:00
Virtual

An Approximation Theory for Metric Space-Valued Functions With A View Towards Deep Learning

Anastasis Kratsios
Further Information
Abstract

We build universal approximators of continuous maps between arbitrary Polish metric spaces X and Y using universal approximators between Euclidean spaces as building blocks. Earlier results assume that the output space Y is a topological vector space. We overcome this limitation by "randomization": our approximators output discrete probability measures over Y. When X and Y are Polish without additional structure, we prove very general qualitative guarantees; when they have suitable combinatorial structure, we prove quantitative guarantees for Hölder-like maps, including maps between finite graphs, solution operators to rough differential equations between certain Carnot groups, and continuous non-linear operators between Banach spaces arising in inverse problems. In particular, we show that the required number of Dirac measures is determined by the combinatorial structure of X and Y. For barycentric Y, including Banach spaces, R-trees, Hadamard manifolds, or Wasserstein spaces on Polish metric spaces, our approximators reduce to Y-valued functions. When the Euclidean approximators are neural networks, our constructions generalize transformer networks, providing a new probabilistic viewpoint of geometric deep learning. 

As an application, we show that the solution operator to an RDE can be approximated within our framework.

Based on the following articles: 

         An Approximation Theory for Metric Space-Valued Functions With A View Towards Deep Learning (2023) - Chong Liu, Matti Lassas, Maarten V. de Hoop, and Ivan Dokmanić (ArXiV 2304.12231)

         Designing universal causal deep learning models: The geometric (Hyper)transformer (2023) B. Acciaio, A. Kratsios, and G. Pammer, Math. Fin. https://onlinelibrary.wiley.com/doi/full/10.1111/mafi.12389

         Universal Approximation Under Constraints is Possible with Transformers (2022) - ICLR Spotlight - A. Kratsios, B. Zamanlooy, T. Liu, and I. Dokmanić.

 

Phases of Wilson lines: conformality and screening
Aharony, O Cuomo, G Komargodski, Z Mezei, M Raviv-Moshe, A Journal of High Energy Physics volume 2023 issue 12 (27 Dec 2023)
Tue, 23 Jan 2024
11:00
L5

Wilson-Ito diffusions

Massimiliano Gubinelli
(Mathematical Institute)
Abstract

In a recent preprint, together with Bailleul and Chevyrev we introduced a class of random fields which try to model the basic properties of quantum fields. I will try to explain the basic ideas and some of the many open problems.

To read the preprint, please click here.

Fri, 26 Jan 2024
12:00
L3

Geometric action for extended Bondi-Metzner-Sachs group in four dimensions

Romain Ruzziconi
(Oxford)
Abstract

This will be an informal discussion seminar based on https://arxiv.org/abs/2211.07592:

The constrained Hamiltonian analysis of geometric actions is worked out before applying the construction to the extended Bondi-Metzner-Sachs group in four dimensions. For any Hamiltonian associated with an extended BMS4 generator, this action provides a field theory in two plus one spacetime dimensions whose Poisson bracket algebra of Noether charges realizes the extended BMS4 Lie algebra. The Poisson structure of the model includes the classical version of the operator product expansions that have appeared in the context of celestial holography. Furthermore, the model reproduces the evolution equations of non-radiative asymptotically flat spacetimes at null infinity.

Mon, 29 Jan 2024

13:00 - 14:00
N3.12

Mathematrix: Standing up for your Rights

Abstract

We will be joined by Tim LaRock, president of the UCU, to talk about everything money and work related, and how these issues intersect with being a minority. Lunch will be provided. 

Subscribe to