Tue, 23 Jan 2024

15:30 - 16:30
Online

Paths in random temporal graphs

Nina Kamčev
(University of Zagreb)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Random temporal graphs are a version of the classical Erdős-Rényi random graph $G(n,p)$ where additionally, each edge has a distinct random time stamp, and connectivity is constrained to sequences of edges with increasing time stamps. We are interested in the asymptotics for the distances in such graphs, mostly in the regime of interest where the average degree $np$ is of order $\log n$ ('near' the phase transition).

More specifically, we will discuss the asymptotic lengths of increasing paths: the lengths of the shortest and longest paths between typical vertices, as well as the maxima between any two vertices; this also covers the (temporal) diameter. In the regime $np \gg \log n$, longest increasing paths were studied by Angel, Ferber, Sudakov and Tassion.

The talk contains joint work with Nicolas Broutin and Gábor Lugosi.

Tue, 23 Jan 2024

14:00 - 15:00
Online

Sharpness of the phase transition for interlacements percolation

Augusto Teixeira
(Instituto Nacional de Matemática Pura e Aplicada (IMPA))
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In this talk we will review the problem of sharpness in percolation, tracing its origins back to the seminal works of Menshikov, Grimmett-Marstrand and Aizenman-Barsky, which successfully settled the question in the context of Bernoulli independent percolation. Then we will present some recent advancements on the field, which have opened up the possibility of investigating dependent percolation models. Special emphasis will be given to the Interpolation technique, which has proved itself very effective. In particular, it has been used to establish the sharpness for Interlacements Percolation, a model introduced by Sznitman with notoriously intricate dependencies.

This talk is based on a joint work with Duminil-Copin, Goswami, Rodriguez and Severo

Rough volatility: fact or artefact?
Cont, R Das, P Sankhya B volume 86 issue 1 191-223 (21 Feb 2024)
Fri, 26 Jan 2024

12:00 - 13:00
Quillen Room

Coadmissible modules over Fréchet-Stein algebras

Finn Wiersig
(University of Oxford)
Abstract

Let K be a non-archimedean field of mixed characteristic (0,p), and let L be a finite extension of
the p-adic numbers contained in K. The speaker is interested in the continuous representations of a
given L-analytic group G in locally convex (usually infinite dimensional) topological vector spaces over K.
This is, up to technicalities, equivalent to studying certain topological modules over the locally
analytic distribution algebra D(G,K) of G. But doing algebra with topological objects is hard!
In this talk, we present an excellent remedy, found by Schneider and Teitelbaum in the early 2000s.

The triangulation complexity of elliptic and sol 3-manifolds
Lackenby, M Purcell, J Mathematische Annalen volume 390 issue 2 1623-1667 (12 Jan 2024)
Fri, 19 Jan 2024

12:00 - 13:00
Common Room

Junior Algebra Social

Abstract

The Junior Algebra and Representation Theory Seminar will kick-off the start of Hilary term with a social event in the common room. Come to catch up with your fellow students and maybe play a board game or two. Afterwards we'll have lunch together.

Image of mathematical instruments

We all know that mathematical activity goes on nowadays in a great variety of settings – not just in academia, but across the whole range of industry, education, and beyond.  This diversity in mathematics is by no means new, and yet the study of the history of mathematics has often failed to capture it.  

Tue, 16 Jan 2024

14:00 - 15:00
L4

Heights of random trees

Louigi Addario-Berry
(McGill University)
Abstract

A rooted tree $T$ has degree sequence $(d_1,\ldots,d_n)$ if $T$ has vertex set $[n]$ and vertex $i$ has $d_i$ children for each $i$ in $[n]$. 

I will describe a line-breaking construction of random rooted trees with given degree sequences, as well as a way of coupling random trees with different degree sequences that also couples their heights to one another. 

The construction and the coupling have several consequences, and I'll try to explain some of these in the talk.

First, let $T$ be a branching process tree with criticalmean oneoffspring distribution, and let $T_n$ have the law of $T$ conditioned to have size $n$. Then the following both hold.
1) $\operatorname{height}(T_n)/\log(n)$ tends to infinity in probability. 
2) If the offspring distribution has infinite variance then $\operatorname{height}(T_n)/n^{1/2}$ tends to $0$ in probability. This result settles a conjecture of Svante Janson.

The next two statements relate to random rooted trees with given degree sequences. 
1) For any $\varepsilon > 0$ there is $C > 0$ such that the following holds. If $T$ is a random tree with degree sequence $(d_1,\ldots,d_n)$ and at least $\varepsilon n$ leaves, then $\mathbb{E}(\operatorname{height}(T)) < C \sqrt{n}$. 
2) Consider any random tree $T$ with a fixed degree sequence such that $T$ has no vertices with exactly one child. Then $\operatorname{height}(T)$ is stochastically less than $\operatorname{height}(B)$, where $B$ is a random binary tree of the same size as $T$ (or size one greater, if $T$ has even size). 

This is based on joint work with Serte Donderwinkel and Igor Kortchemski.

Subscribe to