Tue, 10 Oct 2023

14:00 - 15:00
L3

(CANCELLED) Percolation through isoperimetry

Michael Krivelevich
(Tel Aviv University)
Abstract

Let $G$ be a $d$-regular graph of growing degree on $n$ vertices, and form a random subgraph $G_p$ of $G$ by retaining edge of $G$ independently with probability $p=p(d)$. Which conditions on $G$ suffice to observe a phase transition at $p=1/d$, similar to that in the binomial random graph $G(n,p)$, or, say, in a random subgraph of the binary hypercube $Q^d$?

We argue that in the supercritical regime $p=(1+\epsilon)/d$, $\epsilon>0$ being a small constant, postulating that every vertex subset $S$ of $G$ of at most $n/2$ vertices has its edge boundary at least $C|S|$, for some large enough constant $C=C(\epsilon)>0$, suffices to guarantee the likely appearance of the giant component in $G_p$. Moreover, its asymptotic order is equal to that in the random graph $G(n,(1+\epsilon)/n)$, and all other components are typically much smaller.

We further give examples demonstrating the tightness of this result in several key senses.

A joint work with Sahar Diskin, Joshua Erde and Mihyun Kang.

Thu, 30 Nov 2023

12:00 - 13:00
L3

Gravitational Landau Damping

Matthew Schrecker
(University of Bath)
Abstract

In the 1960s, Lynden-Bell, studying the dynamics of galaxies around steady states of the gravitational Vlasov-Poisson equation, described a phenomenon he called "violent relaxation," a convergence to equilibrium through phase mixing analogous in some respects to Landau damping in plasma physics. In this talk, I will discuss recent work on this gravitational Landau damping for the linearised Vlasov-Poisson equation and, in particular, the critical role of regularity of the steady states in distinguishing damping from oscillatory behaviour in the perturbations. This is based on joint work with Mahir Hadzic, Gerhard Rein, and Christopher Straub.

Thu, 23 Nov 2023

12:00 - 13:00
L3

Recent developments in fully nonlinear degenerate free boundary problems

Edgard Pimentel
(University of Coimbra)
Abstract

We consider degenerate fully nonlinear equations, whose degeneracy rate depends on the gradient of solutions. We work under a Dini-continuity condition on the degeneracy term and prove that solutions are continuously differentiable. Then we frame this class of equations in the context of a free transmission problem. Here, we discuss the existence of solutions and establish a result on interior regularity. We conclude the talk by discussing a boundary regularity estimate; of particular interest is the case of point-wise regularity at the intersection of the fixed and the free boundaries. This is based on joint work with David Stolnicki.

Thu, 19 Oct 2023

12:00 - 13:00
L3

Extrinsic flows on convex hypersurfaces of graph type.

Hyunsuk Kang
(Gwangju Institute of Science and Technology and University of Oxford)
Abstract

Extrinsic flows are evolution equations whose speeds are determined by the extrinsic curvature of submanifolds in ambient spaces.  Some of the well-known ones are mean curvature flow, Gauss curvature flow, and Lagrangian mean curvature flow.

We focus on the special case in which the speed of a flow is given by powers of mean curvature for smooth convex hypersurfaces of graph type, i.e., ones that can be represented as the graph of a function.  Convergence and long-time existence of such flow will be discussed. Furthermore, C^2 estimates which are independent of height of the graph will be derived to see that the boundary of the domain of the graph is also a smooth solution for the same flow as a submanifold with codimension two in the classical sense.  Some of the main ideas, notably a priori estimates via the maximum principle, come from the work of Huisken and Ecker on mean curvature evolution of entire graphs in 1989.  This is a joint work with Ki-ahm Lee and Taehun Lee.

Thu, 16 Nov 2023
16:00
Lecture Room 4, Mathematical Institute

Automated Market Makers Designs beyond Constant Functions

Dr Leandro Sanchez-Betancourt
(Mathematical Insitute, Oxford)
Abstract

Popular automated market makers (AMMs) use constant function markets (CFMs) to clear the demand and supply in the pool of liquidity. A key drawback in the implementation of CFMs is that liquidity providers (LPs) are currently providing liquidity at a loss, on average. In this paper, we propose two new designs for decentralised trading venues, the arithmetic liquidity pool (ALP) and the geometric liquidity pool (GLP). In both pools, LPs choose impact functions that determine how liquidity taking orders impact the marginal exchange rate of the pool, and set the price of liquidity in the form of quotes around the marginal rate. The impact functions and the quotes determine the dynamics of the marginal rate and the price of liquidity. We show that CFMs are a subset of ALP; specifically, given a trading function of a CFM, there are impact functions and  quotes in the ALP that replicate the marginal rate dynamics and the execution costs in the CFM. For the ALP and GLP, we propose an optimal liquidity provision strategy where the price of liquidity maximises the LP's expected profit and the strategy depends on the LP's (i) tolerance to inventory risk and (ii) views on the demand for liquidity. Our strategies admit closed-form solutions and are computationally efficient.  We show that the price of liquidity in CFMs is suboptimal in the ALP. Also, we give conditions on the impact functions and the liquidity provision strategy to prevent arbitrages from rountrip trades. Finally, we use transaction data from Binance and Uniswap v3 to show that liquidity provision is not a loss-leading activity in the ALP.

Fri, 01 Dec 2023

15:00 - 16:00
L5

Computing algebraic distances and associated invariants for persistence

Martina Scolamiero
(KTH Stockholm)
Further Information

Martina Scolamiero is an Assistant Professor in Mathametics with specialization in Geometry and Mathematical Statistics in Artificial Intelligence.

Her research is in Applied and Computational Topology, mainly working on defining topological invariants which are suitable for data analysis, understanding their statistical properties and their applicability in Machine Learning. Martina is also interested in applications of topological methods to Neuroscience and Psychiatry.

Abstract

Pseudo metrics between persistence modules can be defined starting from Noise Systems [1].  Such metrics are used to compare the modules directly or to extract stable vectorisations. While the stability property directly follows from the axioms of Noise Systems, finding algorithms or closed formulas to compute the distances or associated vectorizations  is often a difficult problem, especially in the multi-parameter setting. In this seminar I will show how extra properties of Noise Systems can be used to define algorithms. In particular I will describe how to compute stable vectorisations with respect to Wasserstein distances [2]. Lastly I will discuss ongoing work (with D. Lundin and R. Corbet) for the computation of a geometric distance (the Volume Noise distance) and associated invariants on interval modules.

[1] M. Scolamiero, W. Chachólski, A. Lundman, R. Ramanujam, S. Oberg. Multidimensional Persistence and Noise, (2016) Foundations of Computational Mathematics, Vol 17, Issue 6, pages 1367-1406. doi:10.1007/s10208-016-9323-y.

[2] J. Agerberg, A. Guidolin, I. Ren and M. Scolamiero. Algebraic Wasserstein distances and stable homological invariants of data. (2023) arXiv: 2301.06484.

Fri, 24 Nov 2023

15:00 - 16:00
L5

Indecomposables in multiparameter persistence

Ulrich Bauer
(TU Munich)
Further Information

Ulrich Bauer is an associate professor (W3) in the department of mathematics at the Technical University of Munich (TUM), leading the Applied & Computational Topology group. His research revolves around application-motivated concepts and computational methods in topology and geometry, popularized by application areas such as topological data analysis. Some of his key research areas are persistent homology, discrete Morse theory, and geometric complexes.

Abstract

I will discuss various aspects of multi-parameter persistence related to representation theory and decompositions into indecomposable summands, based on joint work with Magnus Botnan, Steffen Oppermann, Johan Steen, Luis Scoccola, and Benedikt Fluhr.

A classification of indecomposables is infeasible; the category of two-parameter persistence modules has wild representation type. We show [1] that this is still the case if the structure maps in one parameter direction are epimorphisms, a property that is commonly satisfied by degree 0 persistent homology and related to filtered hierarchical clustering. Furthermore, we show [2] that indecomposable persistence modules are dense in the interleaving distance, and that being nearly-indecomposable is a generic property of persistence modules. On the other hand, the two-parameter persistence modules arising from interleaved sets (relative interleaved set cohomology) have a very well-behaved structure [3] that is encoded as a complete invariant in the extended persistence diagram. This perspective reveals some important but largely overlooked insights about persistent homology; in particular, it highlights a strong reason for working at the level of chain complexes, in a derived category [4].

 

[1] Ulrich Bauer, Magnus B. Botnan, Steffen Oppermann, and Johan Steen, Cotorsion torsion triples and the representation theory of filtered hierarchical clustering, Adv. Math. 369 (2020), 107171, 51. MR4091895

[2] Ulrich Bauer and Luis Scoccola, Generic multi-parameter persistence modules are nearly indecomposable, 2022.

[3] Ulrich Bauer, Magnus Bakke Botnan, and Benedikt Fluhr, Structure and interleavings of relative interlevel set cohomology, 2022.

[4] Ulrich Bauer and Benedikt Fluhr, Relative interlevel set cohomology categorifies extended persistence diagrams, 2022.

 

Fri, 10 Nov 2023

15:00 - 16:00
L5

Topological Data Analysis (TDA) for Geographical Information Science (GIS)

Padraig Corcoran
(Cardiff University)
Further Information

Dr Padraig Corcoran is a Senior Lecturer and the Director of Research in the School of Computer Science and Informatics (COMSC) at Cardiff University.

Dr Corcoran has much experience and expertise in the fields of graph theory and applied topology. He is particularly interested in applications to the domains of geographical information science and robotics.

Abstract

Topological data analysis (TDA) is an emerging field of research, which considers the application of topology to data analysis. Recently, these methods have been successfully applied to research problems in the field of geographical information science (GIS). This includes the problems of Point of Interest (PoI), street network and weather analysis. In this talk I will describe how TDA can be used to provide solutions to these problems plus how these solutions compare to those traditionally used by GIS practitioners. I will also describe some of the challenges of performing interdisciplinary research when applying TDA methods to different types of data.

Fri, 03 Nov 2023

15:00 - 16:00
L5

The Expected Betti Numbers of Preferential Attachment Clique Complexes

Chunyin Siu
(Cornell)
Further Information

Chunyin Siu (Alex) is a PhD candidate at Cornell University at the Center for Applied Mathematics, and is a Croucher scholar (2019) and a Youde scholar (2018).

His primary research interests lie in the intersection of topological data analysis, network analysis, topological statistics and computational geometry. He is advised by Prof. Gennady Samorodnitsky. Before coming to Cornell University, he was a MPhil. student advised by Prof. Ronald (Lokming) Lui at the Chinese University of Hong Kong.

Abstract

The preferential attachment model is a natural and popular random graph model for a growing network that contains very well-connected ``hubs''. Despite intense interest in the higher-order connectivity of these networks, their Betti numbers at higher dimensions have been largely unexplored.

In this talk, after a brief survey on random topology, we study the clique complexes of preferential attachment graphs, and we prove the asymptotics of the expected Betti numbers. If time allows, we will briefly discuss their homotopy connectedness as well. This is joint work with Gennady Samorodnitsky, Christina Lee Yu and Rongyi He, and it is based on the preprint https://arxiv.org/abs/2305.11259

Fri, 20 Oct 2023

15:00 - 16:00
L5

Euler characteristic in topological persistence

Vadim Lebovici
(Mathematical Institute, University of Oxford)
Further Information

Vadim Lebovici is a post-doc in the Centre for Topological Data Anslysis. His research interests include: 

  • Multi-parameter persistent homology
  • Constructible functions and Euler calculus
  • Sheaf theory
  • Persistent magnitude
Abstract

In topological data analysis, persistence barcodes record the
persistence of homological generators in a one-parameter filtration
built on the data at hand. In contrast, computing the pointwise Euler
characteristic (EC) of the filtration merely records the alternating sum
of the dimensions of each homology vector space.

In this talk, we will show that despite losing the classical
"signal/noise" dichotomy, EC tools are powerful descriptors, especially
when combined with new integral transforms mixing EC techniques with
Lebesgue integration. Our motivation is fourfold: their applicability to
multi-parameter filtrations and time-varying data, their remarkable
performance in supervised and unsupervised tasks at a low computational
cost, their satisfactory properties as integral transforms (e.g.,
regularity and invertibility properties) and the expectation results on
the EC in random settings. Along the way, we will give an insight into
the information these descriptors record.

This talk is based on the work [https://arxiv.org/abs/2111.07829] and
the joint work with Olympio Hacquard [https://arxiv.org/abs/2303.14040].

 

 

Subscribe to