16:00
99 problems and presentations are most of them
Abstract
Geometric (even combinatorial) group theory suffers from the unfortunate situation that many obvious questions about group presentations (ex: is this a presentation of the trivial group? is this word the identity in that group?) cannot be answered. Not only "we don't know how to tell" but "we know that we cannot know how to tell" - this is called undecidability. This talk will serve as an introduction (for non-experts, since I am also such) to the area of group theoretic decision problems: I'll aim to cover some problems, some solutions (or half-solutions) and some of the general sources of undecidability, as well as featuring some of my (least?) favourite pathological groups.
16:00
Algorithms and 3-manifolds
Abstract
Given a mathematical object, what can you compute about it? In some settings, you cannot say very much. Given an arbitrary group presentation, for example, there is no procedure to decide whether the group is trivial. In 3-manifolds, however, algorithms are a fruitful and active area of study (and some of them are even implementable!). One of the main tools in this area is normal surface theory, which allows us to describe interesting surfaces in a 3-manifold with respect to an arbitrary triangulation. I will discuss some results in this area, particularly around Seifert fibered spaces.
16:00
Stable commutator length in free and surface groups
Abstract
Stable commutator length (scl) is a measure of homological complexity in groups that has attracted attention for its various connections with geometric topology and group theory. In this talk, I will introduce scl and discuss the (hard) problem of computing scl in surface groups. I will present some results concerning isometric embeddings of free groups for scl, and how they generalise to surface groups for the relative Gromov seminorm.
16:00
Minimal disks and the tower construction in 3-manifolds
Abstract
A fundamental result in 3-manifold topology is the loop theorem: Given a null-homotopic simple closed curve in the boundary of a compact 3-manifold $M$, it bounds an embedded disk in $M$. The standard topological proof of this uses the tower construction due to Papakyriakopoulos. In this talk, I will introduce basic existence and regularity results on minimal surfaces, and show how to use the tower construction to prove a geometric version of the loop theorem due to Meeks--Yau: Given a null-homotopic simple closed curve in the boundary of a compact Riemannian 3-manifold $M$ with convex boundary, it bounds an embedded disk of least area. This also gives an independent proof of the (topological) loop theorem.
16:00
Conjugacy languages in virtual graph products
Abstract
Many classes of finitely generated groups have been studied using formal language theory techniques. One historical example is the study of geodesics, which gives rise to the strict growth series of a group. Properties of languages associated to groups can provide insight into the nature of the growth series.
In this talk we will introduce languages associated to conjugacy classes, rather than elements of the group. This will lead us to define an analogous series, namely the conjugacy growth series of a group, which has become a popular topic in recent years. After discussing the necessary group theoretic and language tools needed, we will focus on how these conjugacy languages behave in graph products. We will finish with some new results which look at when these properties can extend to virtual graph products.
16:00
Group cohomology, BNS invariants and subgroup separability
Abstract
Group cohomology is a powerful tool which has found many applications in modern group theory. It can be calculated and interpreted through geometric, algebraic and topological means, and as such it encodes the relationships between these different aspects of infinite groups. The aim of this talk is to introduce a circle of ideas which link group cohomology with the theory of BNS invariants, and the property of being subgroup separable. No prior knowledge of any of these topics will be assumed.
16:00
Condensed Mathematics
Abstract
Condensed Mathematics is a tool recently developed by Clausen and Scholze and it is proving fruitful in many areas of algebra and geometry. In this talk, we will cover the definition of condensed sets, the analogues of topological spaces in the condensed setting. We will also talk about condensed modules over a ring and some of their nice properties like forming an abelian category. Finally, we'll discuss some recent results that have been obtained through the application of Condensed Mathematics.