Mon, 03 Nov 2025
15:30
L3

Formalization of Brownian motion in the Lean theorem prover

Remy Degenne
(INRIA LILLE)
Abstract

I will present a collaborative project in which we formalized the construction of Brownian motion in Lean. Lean is an interactive theorem prover, with a large mathematical library called Mathlib. I will give an introduction to Lean and Mathlib, explain why one may want to formalize mathematics, and give a tour of the probability theory part of Mathlib. I will then describe the Brownian motion project, its organization, and some of the formalized results. For that project, we developed the theory of Gaussian measures and implemented a proof of Kolmogorov's extension theorem, as well as a modern version of the Kolmogorov-Chentsov continuity theorem based on Talagrand's chaining technique. Finally, I will discuss the next step of the project: formalizing stochastic integrals.

Asymmetric limits on timely interventions from noisy epidemic data
Parag, K Lambert, B Donnelly, C Beregi, S Communications Physics

The University's Digital Festival is back for 2025, with a focus on AI and its impact on research, education and operations. This full-day programme of talks and roundtable discussions, with a supporting exhibition to inspire and inform, is open to all staff across the University and Colleges. 

Thursday 20 November at Rhodes House

Tue, 21 Oct 2025

16:00 - 17:00
L6

Randomness in the spectrum of the Laplacian: from flat tori to hyperbolic surfaces of high genus

Jens Marklof
(University of Bristol)
Further Information

(Joint seminar with OxPDE) 

Abstract

I will report on recent progress on influential conjectures from the 1970s and 1980s (Berry-Tabor, Bohigas-Giannoni-Schmit), which suggest that the spectral statistics of the Laplace-Beltrami operator on a given compact Riemannian manifold should be described either by a Poisson point process or by a random matrix ensemble, depending on whether the  geodesic flow is integrable or “chaotic”. This talk will straddle aspects of analysis, geometry, probability, number theory and ergodic theory, and should be accessible to a broad audience. The two most recent results presented in this lecture were obtained in collaboration with Laura Monk and with Wooyeon Kim and Matthew Welsh. 

Non-toric brane webs, Calabi-Yau 3-folds, and 5d SCFTs
Alexeev, V Argüz, N Bousseau, P Communications in Mathematical Physics volume 406 issue 11 (09 Oct 2025)
The KSBA moduli space of stable log Calabi–Yau surfaces
Bousseau, P Arguz, H Alexeev, V Forum of Mathematics, Pi (08 Oct 2025)
Fri, 28 Nov 2025

12:00 - 13:15
L3

Local, universal, Riemann–Roch theorem and holomorphic QFT

Brian Williams
(Boston University)
Abstract

The universal infinitesimal symmetry of a holomorphic field theory is the Lie algebra of holomorphic vector fields. We introduce the higher-dimensional Virasoro algebra and prove a local, universal, form of the Riemann–Roch theorem using Feynman diagrams. We use the concept of a (Jouanoulou) higher-dimensional chiral algebra as developed recently with Gui and Wang. We will remark on applications to superconformal field theory. This project is joint work with Zhengping Gui.

Fri, 14 Nov 2025

12:00 - 13:15
L3

Probabilistic Schwarzian Field Theory

Ilya Losev
(Mathematical Insitute, Oxford)
Abstract
Schwarzian Theory is a quantum field theory which has attracted a lot of attention in the physics literature in the context of two-dimensional quantum gravity, black holes and AdS/CFT correspondence. It is predicted to be universal and arise in many systems with emerging conformal symmetry, most notably in Sachdev–Ye–Kitaev random matrix model and Jackie-–Teitelboim gravity. In this talk we will discuss our recent progress on developing rigorous mathematical foundations of the Schwarzian Field Theory, including rigorous construction of the corresponding measure, calculation of both the partition function and a natural class of correlation functions, and a large deviation principle.
Subscribe to