Mathematical models have been used throughout the COVID-19 pandemic to help plan public health measures. Attention is now turning to how interventions can be removed while continuing to restrict transmission. Predicting the effects of different possible COVID-19 exit strategies is an important current challenge requiring mathematical modelling, but many uncertainties remain.
Family analysis with mendelian Imputations
Abstract
Genotype-phenotype associations can be results of direct effects, genetic nurturing effects and population stratification confounding (The nature of nurture: Effects of parental genotypes, Science, 2018, Deconstructing the sources of genotype-phenotype associations in humans, Science, 2019). Genotypes from parents and siblings of the proband can be used to statistically disentangle these effects. To maximize power, a comprehensive framework for utilizing various combinations of parents’ and siblings’ genotypes is introduced. Central to the approach is mendelian imputation, a method that utilizes identity by descent (IBD) information to non-linearly impute genotypes into untyped relatives using genotypes of typed individuals. Applying the method to UK Biobank probands with at least one parent or sibling genotyped, for an educational attainment (EA) polygenic score that has a R2 of 5.7% with EA, its predictive power based on direct genetic effect alone is demonstrated to be only about 1.4%. For women, the EA polygenic score has a bigger estimated direct effect on age-at-first-birth than EA itself.
Plant puzzle cell shape is an adaptation to a developmental constraint based on mechanical stress and isotropic growth
Abstract
The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape. Since shape in an organism is often thought to be closely related to its function, it suggests that these unusual shapes must have some functional benefit to the plant. We
propose that the creation of these complex shapes is an effective strategy to reduce mechanical stress in the cell wall. Although the
formation of these shapes requires highly anisotropic and non-uniform growth at the sub-cellular level, it appears to be triggered by
isotropic growth at the organ level. Analysis of cell shape over multiple species is consistent with the idea that the puzzle is in
response to a developmental constraint, and that the mechanism is like to be conserved among higher plants.
Digging genomes and structuromes: towards “ab initio” computational biology
Abstract
“In this talk, I shall present the past research track passing through quantum mechanical studies of small molecules to biomolecules, to proteome-wide big data analyses and computational genomics. Next, the ongoing research in our group will be presented that builds upon the expertise on different levels of information processing in life (genome, transcriptome, proteins, small molecules), to develop self-consistent “first principles” models in biology with a wide spectrum of usage. The immediate benefits and the targeted processes will be described covering different layers of the central dogma of biology, multigenic diseases and disease driver/passenger mutation predictions."
Algebraic systems biology
Abstract
Signalling pathways can be modelled as a biochemical reaction network. When the kinetics are to follow mass-action kinetics, the resulting
mathematical model is a polynomial dynamical system. I will overview approaches to analyse these models with steady-state data using
computational algebraic geometry and statistics. Then I will present how to analyse such models with time-course data using differential
algebra and geometry for model identifiability. Finally, I will present how topological data analysis can be help distinguish models
and data.
Infection, inflammation, and intervention: mechanistic modelling of epithelial cells in COVID-19
Abstract
While the pathological mechanisms in COVID-19 illness are still poorly understood, it is increasingly clear that high levels of pro-inflammatory mediators play a major role in clinical deterioration in patients with severe disease. Current evidence points to a hyperinflammatory state as the driver of respiratory compromise in severe COVID-19 disease, with a clinical trajectory resembling acute respiratory distress syndrome (ARDS) but how this “runaway train” inflammatory response emergences and is maintained is not known. In this talk, we present the first mathematical model of lung hyperinflammation due to SARS- CoV-2 infection. This model is based on a network of purported mechanistic and physiological pathways linking together five distinct biochemical species involved in the inflammatory response. Simulations of our model give rise to distinct qualitative classes of COVID-19 patients: (i) individuals who naturally clear the virus, (ii) asymptomatic carriers and (iii–v) individuals who develop a case of mild, moderate, or severe illness. These findings, supported by a comprehensive sensitivity analysis, points to potential therapeutic interventions to prevent the emergence of hyperinflammation. Specifically, we suggest that early intervention with a locally-acting anti-inflammatory agent (such as inhaled corticosteroids) may effectively blockade the pathological hyperinflammatory reaction as it emerges.
Harnessing experimentally-validated mathematical models to forecast influenza-mediated pathology
Abstract
Influenza viruses infect millions of individuals each year and cause a significant amount of morbidity and mortality. Understanding how the virus spreads within the lung, how efficacious host immune control is, and how each influences acute lung injury and disease severity is critical to combat the infection. We used an integrative model-experiment exchange to establish the dynamical connections between viral loads, infected cells, CD8+ T cells, lung injury, and disease severity. Our model predicts that infection resolution is sensitive to CD8+ T cell expansion, that there is a critical T cell magnitude needed for efficient resolution, and that the rate of T cell-mediated clearance is dependent on infected cell density.
We validated the model through a series of experiments, including CD8 depletion and whole lung histomorphometry. This showed that the infected area of the lung matches the model-predicted infected cell dynamics, and that the resolved area of the lung parallels the relative CD8 dynamics. Additional analysis revealed a nonlinear relation between disease severity, inflammation, and lung injury. These novel links between important host-pathogen kinetics and pathology enhance our ability to forecast disease progression.
MultiMAP: dimensionality reduction of multiple datasets by manifold approximation and projection
Abstract
Multi-modal data sets are growing rapidly in single cell genomics, as well as other fields in science and engineering. We introduce MultiMAP, an approach for dimensionality reduction and integration of multiple datasets. MultiMAP embeds multiple datasets into a shared space so as to preserve both the manifold structure of each dataset independently, in addition to the manifold structure in shared feature spaces. MultiMAP is based on the rich mathematical foundation of UMAP, generalizing it to the setting of more than one data manifold. MultiMAP can be used for visualization of multiple datasets as well as an integration approach that enables subsequent joint analyses. Compared to other integration for single cell data, MultiMAP is not restricted to a linear transformation, is extremely fast, and is able to leverage features that may not be present in all datasets. We apply MultiMAP to the integration of a variety of single-cell transcriptomics, chromatin accessibility, methylation, and spatial data, and show that it outperforms current approaches in run time, label transfer, and label consistency. On a newly generated single cell ATAC-seq and RNA-seq dataset of the human thymus, we use MultiMAP to integrate cells across pseudotime. This enables the study of chromatin accessibility and TF binding over the course of T cell differentiation.
Stochastic modeling of reaction-diffusion processes in biology
Abstract
Inherent fluctuations may play an important role in biological and chemical systems when the copy number of some chemical species is small. This talk will present the recent work on the stochastic modeling of reaction-diffusion processes in biochemical systems. First, I will introduce several stochastic models, which describe system features at different scales of interest. Then, model reduction and coarse-graining methods will be discussed to reduce model complexity. Next, I will show multiscale algorithms for stochastic simulation of reaction-diffusion processes that couple different modeling schemes for better efficiency of the simulation. The algorithms apply to the systems whose domain is partitioned into two regions with a few molecules and a large number of molecules.
Oxford Mathematician Gui-Qiang G Chen has been elected Fellow of the European Academy of Sciences.
Gui-Qiang's main research areas lie in nonlinear partial differential equations (PDEs), nonlinear analysis, and their applications to mechanics, geometry, other areas of mathematics and the other sciences.