15:30
Global logarithmic deformation theory
Abstract
A well-known problem in algebraic geometry is to construct smooth projective Calabi-Yau varieties $Y$. In the smoothing approach, we construct first a degenerate (reducible) Calabi-Yau scheme $V$ by gluing pieces. Then we aim to find a family $f\colon X \to C$ with special fiber $X_0 = f^{-1}(0) \cong V$ and smooth general fiber $X_t = f^{-1}(t)$. In this talk, we see how infinitesimal logarithmic deformation theory solves the second step of this approach: the construction of a family out of a degenerate fiber $V$. This is achieved via the logarithmic Bogomolov-Tian-Todorov theorem as well as its variant for pairs of a log Calabi-Yau space $f_0\colon X_0 \to S_0$ and a line bundle $\mathcal{L}_0$ on $X_0$.
16:00
Drawing Knots on Surfaces
Abstract
There is a well-known class of knots, called torus knots, which are those that can be drawn on a "standardly embedded" torus (one that separates the 3-sphere into two solid tori). A fairly natural property of other knots to consider is the genus necessary for that knot to be drawn on a standardly embedded genus g surface. This knot invariant has been studied under the name "embeddability". The goal of this talk is to introduce the invariant, look at some upper and lower bounds in terms of other invariants, and examine its behavior under connected sum.
16:00
The BNSR Invariant of an Artin group and graph colorings.
Abstract
The BNSR Invariant is a classical geometric invariant that encodes the finite generation of all coabelian subgroups of a given finitely generated group. The aim of this talk is to present a conjecture about the structure of the BNSR invariant of an Artin group and to present a new family in which the conjecture is true in terms of graph colorings.
16:00
Ultrasolid Modules and Deformation Theory
Abstract
We introduce ultrasolid modules, a variant of complete topological vector spaces. In this setting, we will prove some results in commutative algebra and apply them to the deformation of algebraic varieties in the language of derived algebraic geometry.
13:00
Symmetries of Coupled Minimal Models
Abstract
When tensor products of N minimal models accumulate at central charge N, they also admit relevant operators arbitrarily close to marginality. This raises the tantalizing possibility that they can be use to reach purely Virasoro symmetric CFTs where the breaking of extended chiral symmetry can be seen in a controlled way. This talk will give an overview of the theories where this appears to be the case, according to a brute force check at low lying spins. We will also encounter an interesting non-example where the same type of analysis can be used to give a simpler proof of integrability.
15:30
Quiver with potential and attractor invariants
Abstract
16:00
On non-Gaussian multiplicative chaos
Abstract
We consider two approximation schemes for the construction of a class of non-Gaussian multiplicative chaos, and show that they give rise to the same limit in the entire subcritical regime. Our approach uses a modified second moment method with the help of a new coupling argument, and does not rely on any Gaussian approximation or thick point analysis. As an application, we extend the martingale central limit theorem for partial sums of random multiplicative functions to L^1 twists. This is a joint work with Ofir Gorodetsky.
16:00
Fermionic structure in the Abelian sandpile and the uniform spanning tree
Abstract