Tue, 04 Feb 2020

15:30 - 16:30
L4

Genus one mirror symmetry

Dennis Eriksson
(Chalmers University)
Abstract

Mirror symmetry, in a crude formulation, is usually presented as a correspondence between curve counting on a Calabi-Yau variety X, and some invariants extracted from a mirror family of Calabi-Yau varieties. After the physicists Bershadsky-Cecotti-Ooguri-Vafa (henceforth BCOV), this is organised according to the genus of the curves in X we wish to enumerate, and gives rise to an infinite recurrence of differential equations. In this talk, I will give a general introduction to these problems, and present a rigorous mathematical formulation of the BCOV conjecture at genus one, in terms of a lifting of the Grothendieck-Riemann-Roch. I will explain the main ideas of the proof of the conjecture for Calabi-Yau hypersurfaces in projective space, based on the Riemann-Roch theorem in Arakelov geometry. Our results generalise from dimension 3 to arbitrary dimensions previous work of Fang-Lu-Yoshikawa.
 

This is joint work with G. Freixas and C. Mourougane.

Fri, 25 Oct 2019

10:00 - 11:00
L3

Maximum temperature rise of a thermally conductive cuboid subjected to a (potentially time dependent) power deposition profile

Wayne Arter
(CCFE)
Abstract

The challenge is to produce a reduced order model which predicts the maximum temperature rise of a thermally conducting object subjected to a power deposition profile supplied by an external code. The target conducting object is basically cuboidal but with one or more shaped faces and may have complex internal cooling structures, the deposition profile may be time dependent and exhibit hot spots and sharp edged shadows among other features. An additional feature is the importance of radiation which makes the problem nonlinear, and investigation of control strategies is also of interest. Overall there appears to be a sequence of problems of degree of difficulty sufficient to tax the most gifted student, starting with a line profile on a cuboid (quasi-2D) with linearised radiation term, and moving towards increased difficulty.

Tue, 03 Dec 2019
14:30
L1

Estimation of ODE models with discretization error quantification

Takeru Matsuda
(University of Tokyo)
Abstract

We consider estimation of ordinary differential equation (ODE) models from noisy observations. For this problem, one conventional approach is to fit numerical solutions (e.g., Euler, Runge–Kutta) of ODEs to data. However, such a method does not account for the discretization error in numerical solutions and has limited estimation accuracy. In this study, we develop an estimation method that quantifies the discretization error based on data. The key idea is to model the discretization error as random variables and estimate their variance simultaneously with the ODE parameter. The proposed method has the form of iteratively reweighted least squares, where the discretization error variance is updated with the isotonic regression algorithm and the ODE parameter is updated by solving a weighted least squares problem using the adjoint system. Experimental results demonstrate that the proposed method improves estimation accuracy by accounting for the discretization error in a data-driven manner. This is a joint work with Yuto Miyatake (Osaka University).

Tue, 26 Nov 2019
14:30
L5

State-of-the-art Linear Algebra methods can bring significant speedups to ADMM

Nikitas Rontsis
(Oxford)
Abstract

The Alternating Directions Method of Multipliers (ADMM) is a widely popular first-order method for solving convex optimization problems. Its simplicity is arguably one of the main reasons for its popularity. For a broad class of problems, ADMM iterates by repeatedly solving perhaps the two most standard Linear Algebra problems: linear systems and symmetric eigenproblems. In this talk, we discuss how employing standard Krylov-subspace methods for ADMM can lead to tenfold speedups while retaining convergence guarantees.

Thu, 12 Dec 2019

12:00 - 13:30
L3

Analysis and computations of a nonlocal thin film model for two-fluid shear driven flows

Professor Saleh Tanveer
(Ohio State University)
Abstract


We present analysis and computations of a non-local thin film model developed by Kalogirou et al (2016) for a perturbed two-layer Couette flow when the thickness of the more viscous fluid layer next to the stationary wall is small compared to the thickness of the less viscous fluid. Travelling wave solutions and their stability are determined numerically, and secondary bifurcation points identified in the process. We also determine regions in parameter space where bistability is observed with two branches being linearly stable at the same time. The travelling wave solutions are mathematically justified through a quasi-solution analysis in a neighbourhood of an empirically constructed approximate solution. This relies in part on precise asymptotics of integrals of Airy functions for large wave numbers. The primary bifurcation about the trivial state is shown rigorously to be supercritical, and the dependence of bifurcation points, as a function of Reynolds number R and the primary wavelength 2πν−1/2 of the disturbance, is determined analytically. We also present recent results on time periodic solutions arising from Hoof-Bifurcation of the primary solution branch.


(This work is in collaboration with D. Papageorgiou & E. Oliveira ) 
 

Subscribe to