Fri, 03 May 2019

14:00 - 15:00
L3

Biomechanics can provide a new perspective on microbiology

Professor Takuji Ishikawa
(Dept. Finemechanics Grad. Sch. Eng Tohoku University)
Abstract

Despite their tiny size, microorganisms play a huge role in many biological, medical, and engineering phenomena. For example, massive plankton blooms are an integral part of the oceanic ecosystem. Algal cells incorporate carbon dioxide, which affects global warming. In industry, microorganisms are used in bioreactors to produce food and medicines and to treat sewage. The human body hosts hundreds of microorganism species, and the number of microorganisms in the human body is roughly double the number of cells in the body. In the intestine, approximately 1 kg of enterobacteria form a unique ecosystem, called the gut flora, which plays important roles in digestion and in relation to infection. Because of the considerable influence that microorganisms have on human life, the study of their behavior and function is important.

Recent research has demonstrated the importance of biomechanics in understanding the behavior and functions of microorganisms. For example, red tides can be induced by the interplay between the background flow and swimming cells. A dense suspension of bacteria can generate a coherent structure, which strongly enhances mass transport in a suspension. These phenomena show that the physical environments around cells alter their behavior and biological functions. Such a biomechanical understanding is still lacking in microbiology, and we believe that biomechanics can provide new perspectives on future microbiology.

In this talk, we first introduce some of our studies of the behavior of individual swimming microorganisms near surfaces. We show that hydrodynamic forces can trap cells at liquid–air or liquid–solid interfaces. We then introduce interactions between a pair of swimming microorganisms, because a two-body interaction is the simplest many-body interaction. We show that our mathematical models can describe the interactions between two nearby swimming microorganisms. Collective motions formed by a group of swimming microorganisms are also introduced. We show that some collective motions of microorganisms, such as coherent structures of bacterial suspensions, can be understood in terms of fluid mechanics. We then discuss how cellular-level phenomena can change the rheological and diffusion properties of a suspension. The macroscopic properties of a suspension are strongly affected by mesoscale flow structures, which in turn are strongly affected by the interactions between cells. Hence, a bottom-up strategy, i.e., from a cellular level to a continuum suspension level, represents a natural approach to the study of a suspension of swimming microorganisms. Finally, we discuss whether our understanding of biological functions can be strengthened by the application of biomechanics, and how we can contribute to the future of microbiology.

Mon, 10 Jun 2019
15:45
L6

Unitary group integrals, surfaces, and mapping class groups

Michael Magee
(Durham University)
Abstract


For any word w in a free group of rank r>0, and any compact group G, w induces a `word map' from G^r to G by substitutions of elements of G for the letters of w. We may also choose the r elements of G independently with respect to Haar measure on G, and then apply the word map. This gives a random element of G whose distribution depends on w. An interesting observation is that this distribution doesn't change if we change w by an automorphism of the free group. It is a wide open question whether the measures induced by w on compact groups determine w up to automorphisms.
My talk will be mostly about the case G = U(n), the n by n complex unitary matrices. The technical tool we use is a precise formula for the moments of the distribution induced by w on U(n). In the formula, there is a surprising appearance of concepts from infinite group theory, more specifically, Euler characteristics of mapping class groups of surfaces. I'll explain how our formula allows us to make progress on the question described above.
This is joint work with Doron Puder (Tel Aviv).
 

Mon, 03 Jun 2019
15:45
L6

The Tits alternative for two-dimensional Artin groups

Alexandre Martin
(Heriot Watt University)
Abstract

A group is said to satisfy the Tits Alternative if its finitely generated subgroups exhibit a striking dichotomy: they are either "big" (they contain a non-abelian free subgroup) or "small" (they are virtually soluble). Many groups of geometric interest have been shown to satisfy the Tits Alternative: linear groups, mapping class groups of hyperbolic surfaces, etc. In this talk, I will explain how one can use ideas from group actions in negative curvature to prove such a dichotomy. In particular, I will show how one can prove a strengthening of the Tits Alternative for a large class of Artin groups. This is joint work with Piotr Przytycki.

Tue, 02 Apr 2019

11:00 - 16:00
L2

MiLS Meeting on Multiscale modelling techniques and their applications in biology and medicine

Various Speakers
(Mathematical Institute)
Further Information

By Daniele Avitabile on Mar 04, 2019 09:38 pm

The ninth Mathematics in Life Sciences (MiLS) meeting will focus on "Multiscale modelling techniques and their applications in biology and medicine". It will take place on the 2nd of April 2019 from 11am to 4pm, at the University of Oxford. This is the first meeting organised in collaboration with our new members, Sarah Waters (University of Oxford), and  Alessia Annibale (King's College London).

The meeting will consist of two review talks aimed at non-experts, combined with several contributed research talks. The review talks will be given by Oliver Jensen (University of Manchester), and Patrick Farrell (University of Oxford).

Attendance to the meeting is free of charge, but we kindly ask you to register your intention to attend, by sending an email to Nicola.Kirkham@maths.ox.ac.uk

We solicit contributed talks and posters, especially from early career researchers and postgraduate students. If you are interested in giving a talk, please send a title and abstract to Sarah.Waters (waters [at] maths [dot] ox [dot] ac [dot] uk) and Daniele Avitabile (daniele [dot] avitabile [at] nottingham [dot] ac [dot] uk).

You can read more about MiLS here and here and you can subscribe to our low-traffic newsletter here.


Read in browser »

 

Wed, 06 Mar 2019
11:00
N3.12

Introduction to Large Cardinal theory

Alex Chevalier
(University of Oxford)
Abstract

I will present some basic concepts in Large Cardinal theory. A Large Cardinal axiom is the assertion of the existence of a cardinal so large that it entails the existence of set-sized models of ZFC, something which we know ZFC alone does not do. Large Cardinal axioms are therefore strengthenings of ZFC. We believe them to be consistent with ZFC, but this is a touchy subject. Nevertheless, Large Cardinal axioms have become an essential tool in set theory, providing insight into the fine structure of the set theoretic universe. In my talk, I will focus on inaccessible and measurable cardinals, and, if time permits, I will discuss supercompact cardinals.

Mon, 27 May 2019
15:45
L6

Secondary invariants and mock modularity

Theo Johnson-Freyd
(Perimeter Institute for Theoretical Physics)
Abstract

A two-dimensional, minimally Supersymmetric Quantum Field Theory is "nullhomotopic" if it can be deformed to one with spontaneous supersymmetry breaking, including along deformations that are allowed to "flow up" along RG flow lines. SQFTs modulo nullhomotopic SQFTs form a graded abelian group $SQFT_\bullet$. There are many SQFTs with nonzero index; these are definitely not nullhomotopic, and indeed represent nontorision classes in $SQFT_\bullet$. But relations to topological modular forms suggests that $SQFT_\bullet$ also has rich torsion. Based on an analysis of mock modularity and holomorphic anomalies, I will describe explicitly a "secondary invariant" of SQFTs and use it to show that a certain element of $SQFT_3$ has exact order $24$. This work is joint with D. Gaiotto and E. Witten.

Mon, 17 Jun 2019

14:15 - 15:15
L4

Bryant-Salamon metrics and coassociative fibrations

Jason Lotay
(Oxford)
Abstract

The first examples of complete holonomy G2 metrics were constructed by Bryant-Salamon and are thus of central importance in geometry, but also in physics, appearing for example in the work of Atiyah-Witten, Acharya-Witten and Acharya-Gukov.   I will describe joint work in progress with Spiro Karigiannis which realises Bryant-Salamon manifolds in dimension 7 as coassociative fibrations.  In particular, I will discuss the relationship of this study to gravitational instantons, conical singularities, and to recent work of Donaldson and Joyce-Karigiannis.

 

Thu, 16 May 2019
16:00
C4

Introduction to Symplectic Topology

Todd Liebenschutz-Jones
(University of Oxford)
Abstract

My goal for the talk is to give a "from the ground-up" introduction to symplectic topology. We will cover the Darboux lemma, pseudo-holomorphic curves, Gromov-Witten invariants, quantum cohomology and Floer cohomology.

Fri, 21 Jun 2019

16:00 - 17:00
L1

North meets South colloquium

Aden Forrow and Paul Ziegler
Abstract

Aden Forrow
Optimal transport and cell differentiation

Abstract
Optimal transport is a rich theory for comparing distributions, with both deep mathematics and application ranging from 18th century fortification planning to computer graphics. I will tie its mathematical story to a biological one, on the differentiation of cells from pluripotency to specialized functional types. First the mathematics can support the biology: optimal transport is an apt tool for linking experimental samples across a developmental time course. Then the biology can inspire new mathematics: based on the branching structure expected in differentiation pathways, we can find a regularization method that dramatically improves the statistical performance of optimal transport.

Paul Ziegler
Geometry and Arithmetic

Abstract
For a family of polynomials in several variables with integral coefficients, the Weil conjectures give a surprising relationship between the geometry of the complex-valued roots of these polynomials and the number of roots of these polynomials "modulo p". I will give an introduction to this circle of results and try to explain how they are used in modern research.
 

Fri, 17 May 2019

16:00 - 17:00
L1

North meets South colloquium

Valérie Voorsluijs and Matthias Nagel
(University of Oxford)
Abstract

Valérie Voorsluijs
Deterministic limit of intracellular calcium spikes
Abstract: In non-excitable cells, global calcium spikes emerge from the collective dynamics of clusters of calcium channels that are coupled by diffusion. Current modeling approaches have opposed stochastic descriptions of these systems to purely deterministic models, while both paradoxically appear compatible with experimental data. Combining fully stochastic simulations and mean-field analyses, we demonstrate that these two approaches can be reconciled. Our fully stochastic model generates spike sequences that can be seen as noise-perturbed oscillations of deterministic origin while displaying statistical properties in agreement with experimental data. These underlying deterministic oscillations arise from a phenomenological spike nucleation mechanism.


Matthias Nagel
Knots in dimensions three and four
Abstract: Knot theory studies the various embeddings of a circle into three-dimensional space. I will describe an equivalence relation on knots, called "concordance", which takes the fourth dimension into account. The study of concordance is intimately related with many problems at the heart of the topology of four-manifolds, such as the difference between the smooth and the topological category, and I will discuss results that illuminate this relation.

Subscribe to