Wed, 06 Mar 2019
16:00
C1

A quick intro to right angled buildings

Ido Grayevsky
(Oxford University)
Abstract


Buildings are geometric objects, originally introduced by Tits to study Lie groups that act on their corresponding building. Apart from their significance for Lie groups, buidings and their automorphism groups are a rich source of examples for groups with interesting properties (for example, it is a result of Caprace that some buildings admit an automorphism group which is compactly generated, abstractly simple and locally compact). Right Angled Buildings (RABs) are a specific kind of building whose geometry can be well understood as it resembles the geometry of a tree. This allows one to generalise ideas like the Burger-Mozes universal groups to the setting of RABs.
I plan to give an introduction to RABs. As a complete formal introduction to buildings would take more than an hour, I will instead present various illustrative examples to give you an idea of what you should have in mind when you think of a (right-angled) building. I will be as formal as I can in presenting the basic features of buildings - Coxeter complexes, chambers, apartments, retractions and residues.  In the remaining time I will say as much as I can about the geometry of RABs, and explain how to use this geometry to derive a structure theorem for the automorphism group of a RAB, towards a definition of Burger-Mozes universal groups for RABs.
 

Tue, 10 Dec 2019

17:00 - 18:00
L1

Oxford Mathematics Christmas Public Lecture: Chris Budd - Why does Rudolf have a shiny nose?

Chris Budd
(University of Bath)
Further Information

For our popular Christmas lecture this year Chris Budd will give a seasonal talk with a number of light hearted applications of mathematics to the
festive season. 

Chris is currently Professor of Applied Mathematics at the University of Bath, and Professor of Geometry at Gresham College. He is a passionate populariser of mathematics and was awarded an OBE in 2015 for services to science and maths education.

Please email @email to register.

Watch live:

https://www.facebook.com/OxfordMathematics/
https://livestream.com/oxuni/Budd

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Wed, 29 May 2019

18:00 - 19:00
L1

Marcus du Sautoy - The Creativity Code: How AI is learning to write, paint and think

Marcus du Sautoy
(University of Oxford)
Further Information

Oxford Mathematics Public Lectures together with the Simonyi Science Show:

Will a computer ever compose a symphony, write a prize-winning novel, or paint a masterpiece? And if so, would we be able to tell the difference?

In The Creativity Code, Marcus du Sautoy examines the nature of creativity, as well as providing an essential guide into how algorithms work, and the mathematical rules underpinning them. He asks how much of our emotional response to art is a product of our brains reacting to pattern and structure. And might machines one day jolt us in to being more imaginative ourselves?

Marcus du Sautoy is Simonyi Professor for the Public Understanding of Science in Oxford.

6-7pm
Mathematical Institute
Oxford

Please email @email to register.

Watch live:
https://facebook.com/OxfordMathematics
https://livestream.com/oxuni/du-Sautoy2

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Mon, 28 Jan 2019
15:45
L6

Transfers and traces in the algebraic K-theory of spaces

George Raptis
(Regensburg)
Further Information

The algebraic K-theory of a space encodes important invariants of the space which are of interest in both homotopy theory and geometric topology. 

In this talk, I will discuss properties of transfer maps in the algebraic K-theory of spaces ('wrong-way' maps) in connection with index theorems for (smooth or topological) manifold bundles and also compare these maps with other related constructions such as the Becker-Gottlieb transfer and the Waldhausen trace.

Tue, 29 Jan 2019

14:30 - 15:00
L3

Nearby preconditioning for multiple realisations of the Helmholtz equation, with application to uncertainty quantification

Owen Pembery
(Bath)
Abstract

The Helmholtz equation models waves propagating with a fixed frequency. Discretising the Helmholtz equation for high frequencies via standard finite-elements results in linear systems that are large, non-Hermitian, and indefinite. Therefore, when solving these linear systems, one uses preconditioned iterative methods. When one considers uncertainty quantification for the Helmholtz equation, one will typically need to solve many (thousands) of linear systems corresponding to different realisations of the coefficients. At face value, this will require the computation of many preconditioners, a potentially expensive task.

Therefore, we investigate how well a preconditioner for one realisation of the Helmholtz equation works as a preconditioner for another realisation. We prove that if the two realisations are 'nearby' (with a precise meaning of 'nearby'), then the preconditioner is robust (that is, preconditioned GMRES converges in a number of iterations that is independent of frequency). We also give some preliminary computational results indicating the speedup one obtains in uncertainty quantification calculations.

Thu, 07 Feb 2019

16:00 - 17:00
L6

Bohr sets and multiplicative diophantine approximation

Sam Chow
(Oxford University)
Abstract

Gallagher's theorem is a strengthening of the Littlewood conjecture that holds for almost all pairs of real numbers. I'll discuss some recent refinements of Gallagher's theorem, one of which is joint work with Niclas Technau. A key new ingredient is the correspondence between Bohr sets and generalised arithmetic progressions. It is hoped that these are the first steps towards a metric theory of multiplicative diophantine approximation on manifolds. 

Tue, 29 Jan 2019

14:00 - 14:30
L3

Dimensionality reduction for linear least square problems

Zhen Shao
(Oxford)
Abstract

The focus of this talk is how to tackle huge linear least square problems via sketching, a dimensionality reduction technique from randomised numerical linear algebra. The technique allows us to project the huge problem to a smaller dimension that captures essential information of the original problem. We can then solve the projected problem directly to obtain a low accuracy solution or using the projected problem to construct a preconditioner for the original problem to obtain a high accuracy solution. I will survey the existing projection techniques and evaluate the performance of sketching for linear least square problems by comparing it to the state-of-the-art traditional solution methods. More than ten-fold speed-up has been observed in some cases.

Tue, 22 Jan 2019

14:30 - 15:00
L5

Shape optimization with finite elements

Alberto Paganini
(Oxford)
Abstract

A common strategy to solve shape optimization problems is to select an initial domain and to update it iteratively until it satisfies certain optimality crietria. In the presence of PDE-constraints, computing these updates requires solving a boundary value problem on a domain that changes at every iteration. We explain how to use isoparametric finite elements to tackle this issue. We also show how finite elements allow computing these updates without deriving shape derivative formulas by hand.

Subscribe to