Mon, 07 Nov 2016

11:00 - 12:00
C4

On the Ihara/Oda-Matsumoto conjecture and its variants

Adam Topaz
(Oxford)
Abstract

Following the spirit of Grothendieck’s Esquisse d’un Programme, the Ihara/Oda-Matsumoto conjecture predicted a combinatorial description of the absolute Galois group of Q based on its action on geometric fundamental groups of varieties. This conjecture was resolved in the 90’s by Pop using anabelian techniques. In this talk, I will discuss some satronger variants of this conjecture, focusing on the more recent solutions of its pro-ell and mod-ell two-step nilpotent variants.
 

Fri, 04 Nov 2016
14:15
C3

Two phase flow in volcanic conduits

Andrew Fowler
(Universities of Oxford and Limerick)
Abstract

Strombolian volcanoes are thought to maintain their semi-permanent eruptive style by means of counter-current two-phase convective flow in the volcanic conduit leading from the magma chamber, driven by the buoyancy provided by exsolution of volatiles such as water vapour and carbon dioxide in the upwelling magma, due to pressure release. A model of bubbly two-phase flow is presented to describe this, but it is found that the solution breaks down before the vent at the surface is reached. We propose that the mathematical breakdown of the solution is associated with the physical breakdown of the two-phase flow regime from a bubbly flow to a churn-turbulent flow. We provide a second two-phase flow model to describe this regime, and we show that the solution can be realistically continued to the vent. The model is also in keeping with observations of eruptive style.

Fri, 11 Nov 2016
10:00
N3.12

Realising the projective representations of the symmetric group using Dirac cohomology.

Kieran Calvert
(University of Oxford)
Abstract

Firstly I will outline Dirac cohomology for graded Hecke algebras and the branching rules for the projective representations of $S_n$. Combining these notions with the Jucys-Murphy elements for $\tilde{S}_n$, that is the double cover of the symmetric group, I will go through a method to completely describe the spectrum data for the Jucys-Murphy elements for $\tilde{S}_n$. If time allows I will also explain how this spectrum data gives rise to a a concrete description for the matrices of the action of $\tilde{S}_n$.

Wed, 23 Nov 2016
11:30
N3.12

tba

Phillip Dittmann
(University of Oxford)
Wed, 16 Nov 2016
11:30
N3.12

Group theory in chemistry

Kieran Calvert
(University of Oxford)
Abstract

I will try to give a brief description of the use of group theory and character theory in chemistry, specifically vibrational spectroscopy. Defining the group associated to a molecule, how one would construct a representation corresponding to such a molecule and the character table associated to this. Then, time permitting, I will go in to the deconstruction of the data from spectroscopy; finding such a group and hence molecule structure. 

Wed, 09 Nov 2016
11:30
N3.12

Hilbert's Third Problem

Alex Margolis
Abstract

Two polyhedra are said to be scissors congruent if they can be subdivided into the same finite number of polyhedra such that each piece in the first polyhedron is congruent to one in the second. In 1900, Hilbert asked if there exist tetrahedra of the same volume which are not scissors congruent. I will give a history of this problem and its proofs, including an incorrect 'proof' by Bricard from 1896 which was only rectified in 2007.

Wed, 02 Nov 2016
11:30
N3.12

Methods of Galois group computation

Adam Jones
Abstract

The problem of computing the Galois group of an irreducible, rational polynomial has been studied for many years. I will discuss the methods developed over the years to approach this problem, and give some examples of them in practice. These methods mainly involve constructing and factorising resolvent polynomials, and thereby determining better upper bounds for the conjugacy class of the Galois group within the symmetric group, i.e. describe its action on the roots of the polynomial explicitly. I will describe how using approximations to the zeros of the polynomial allows us to construct resolvents, and in particular, how using p-adic approximations can be advantageous over numerical approximations, and how this can yield a direct and systematic method of determining the Galois group.

Mathematics can look like a foreign language to those who have not studied it in depth. Even for mathematicians, it can be difficult to understand the work of colleagues in other branches of mathematics, or indeed to know what questions they are seeking to answer in their research, because the vocabularies are so specialised and technical.

Subscribe to