The Fourier transform is that rarest of things: a mathematical method from over 200 years ago which not only remains an active area of research in its own right, but is also an invaluable tool in nearly every branch of mathematics. Though originally developed by Fourier in 1807 to help solve certain partial differential equations, the transform is a living example of a remarkable feature of mathematics, that a tool created in one sub-discipline can break through these artificial classifications and become vital in another.

Fri, 10 Feb 2017

16:00 - 17:00
L1

Self-organized dynamics: from emergence of consensus to social hydrodynamics

Eitan Tadmor
(University of Maryland and ETH-ITS)
Abstract

Self-organization is observed in systems driven by the “social engagement” of agents with their local neighbors. Prototypical models are found in opinion dynamics, flocking, self-organization of biological organisms, and rendezvous in mobile networks.

We discuss the emergent behavior of such systems. Two natural questions arise in this context. The underlying issue of the first question is how different rules of engagement influence the formation of clusters, and in particular, the emergence of 'consensus'. Different paradigms of emergence yield different patterns, depending on the propagation of connectivity of the underlying graphs of communication.  The second question involves different descriptions of self-organized dynamics when the number of agents tends to infinity. It lends itself to “social hydrodynamics”, driven by the corresponding tendency to move towards the local means. 

We discuss the global regularity of social hydrodynamics for sub-critical initial configurations.

Fri, 10 Jun 2016

11:00 - 12:00
C2

Period rings

K. Ardakov
(Oxford)
Abstract

This talk will give a description of the period ring B_dR of Fontaine, which uses de Rham algebra computations. 

This talk is part of the workshop on Beilinson's approach to p-adic Hodge  theory.

Fri, 03 Jun 2016

11:00 - 12:00
C2

The de Rham algebra of a point in affine space

Damian Rössler
(Oxford)
Abstract

Following the notes and an article of B. Bhatt, we shall compute the de Rham algebra of the immersion of the zero-section of affine space over Z/p^nZ.

This talk is part of the workshop on Beilinson's approach to p-adic Hodge theory.

Fri, 27 May 2016

11:00 - 12:00
C2

The de Rham algebra

Kevin McGerty
(Oxford)
Abstract

This talk will describe the basic properties of the de Rham algebra, which is a generalisation of the de Rham algebra over smooth schemes, which was introduced by L. Illusie in his monograph 'Complexe cotangent et déformations'.

Subscribe to