Developmental environment effects on sexual selection in male and female drosophila melanogaster
Morimoto Borges, J Pizzari, T Wigby, S PLoS One volume 11 issue 5 (01 Jan 2016)
Tue, 17 May 2016

12:00 - 13:15
L4

On-shell recursion at one loop in pure Yang-Mills theory, to an extent.

Dr Rutger Boels
(DESY, Hamburg)
Abstract

Loop computations put the 'quantum' into quantum field theory. Much effort has focused on their structure and properties, with most spectacular progress in maximally supersymmetric gauge theories in the planar limit. These theories are however quite far from reality as described for instance in the standard model of particle physics. In this talk I'll report on ongoing work using BCFW on-shell recursion to obtain loop amplitude integrands in a much more realistic theory, pure Yang-Mills theory, using methods which apply directly to the standard model.

Tue, 17 May 2016

12:45 - 13:30
C5

Sorting of micro-swimmers in flowing visco-elastic fluids

Arnold Mathijssen
(University of Oxford)
Abstract

Interactions between micro-swimmers and their complex flow environments are important in many biological systems, such as sperm cells swimming in cervical mucus or bacteria in biofilm initiation areas. We present a theoretical model describing the dynamics of micro-organisms swimming in a plane Poiseuille flow of a viscoelastic fluid, accounting for hydrodynamic interactions and biological noise. General non-Newtonian effects are investigated, including shear-thinning and normal stress differences that lead to migration of the organisms across the streamlines of the background flow. We show that micro-swimmers are driven towards the centre-line of the channel, even if countered by hydrodynamic interactions with the channel walls that typically lead to boundary accumulation. Furthermore, we demonstrate that the normal stress differences reorient the swimmers at the centre-line in the direction against the flow so that they swim upstream. This suggests a natural sorting mechanism to select swimmers with a given swimming speed larger than the tunable Poiseuille flow velocity. This framework is then extended to study trapping and colony formation of pathogens near surfaces, in corners and crevices. 

Wed, 25 May 2016
16:00
L6

A counterexample concerning regularity properties for systems of conservation laws

Laura Caravenna
(Università degli Studi di Padova)
Abstract
In 1973 D. G. Schaeffer established an interesting regularity result that applies to scalar conservation laws with uniformly convex fluxes. Loosely speaking, it can be formulated as follows: for a generic smooth initial datum, the admissible solution is smooth outside a locally finite number of curves in the time-space plane. Here the term ``generic`` should be interpreted in a suitable technical sense, related to the Baire Category Theorem. Several author improved later his result, also for numerical purposes, while only C. M. Dafermos and X. Cheng extended it in 1991 to a special 2x2 system with coinciding shock and rarefaction curves and which satisfies an assumption that reframes what in the scalar case is the assumption of uniformly convex flux, called `genuine nonlinearity'. My talk will aim at discussing a recent explicit counterexample that shows that for systems of at least three equations, even when the flux satisfies the assumption of genuinely nonlinearity, Schaeffer`s Theorem does not extend because countably many shocks might develop from a ``big`` family of smooth initial data. I will then mention related works in progress.
Wed, 08 Jun 2016
16:00
C2

Intensional Partial Metric Spaces

Steve Matthews
(Warwick)
Abstract

Partial metric spaces generalise metric spaces by allowing self-distance
to be a non-negative number. Originally motivated by the goal to
reconcile metric space topology with the logic of computable functions
and Dana Scott's innovative theory of topological domains they are now
too rigid a form of mathematics to be of use in modelling contemporary
applications software (aka 'Apps') which is increasingly concurrent,
pragmatic, interactive, rapidly changing, and inconsistent in nature.
This talks aims to further develop partial metric spaces in order to
catch up with the modern computer science of 'Apps'. Our illustrative
working example is that of the 'Lucid' programming language,and it's
temporal generalisation using Wadge's 'hiaton'.

Wed, 18 May 2016
16:00
C2

Locally compact normal spaces: omega_1-compactness and sigma-countable compactness

Peter Nyikos
(South Carolina)
Abstract

ABSTRACT: A space of countable extent, also called an omega_1-compact space, is one in which every closed discrete subspace is countable.  The axiom used in the following theorem is consistent if it is consistent that there is a supercompact cardinal.

Theorem 1  The LCT axiom implies that every hereditarily normal, omega_1-compact space
is sigma-countably compact,  i.e., the union of countably many countably compact subspaces.

Even for the specialized subclass of monotonically normal spaces, this is only a consistency result:

Theorem 2   If club, then there exists a locally compact, omega_1-compact monotonically
normal space that is not sigma-countably compact.

These two results together are unusual in that most independence results on
monotonically normal spaces depend on whether Souslin's Hypothesis (SH) is true,
and do not involve large cardinal axioms. Here, it is not known whether either
SH or its negation affect either direction in this independence result.

The following unsolved problem is also discussed:

Problem  Is there a ZFC example of a locally compact, omega_1-compact space
of cardinality aleph_1 that is not sigma-countably compact?

Wed, 25 May 2016
15:00
L4

Breaking Symmetric Cryptosystems using Quantum Period Finding

Gaëtan Leurent
(INRIA)
Abstract

Due to Shor's algorithm, quantum computers are a severe threat for public key cryptography. This motivated the cryptographic community to search for quantum-safe solutions. On the other hand, the impact of quantum computing on secret key cryptography is much less understood. In this paper, we consider attacks where an adversary can query an oracle implementing a cryptographic primitive in a quantum superposition of different states. This model gives a lot of power to the adversary, but recent results show that it is nonetheless possible to build secure cryptosystems in it.
We study applications of a quantum procedure called Simon's algorithm (the simplest quantum period finding algorithm) in order to attack symmetric cryptosystems in this model. Following previous works in this direction, we show that several classical attacks based on finding collisions can be dramatically sped up using Simon's algorithm: finding a collision requires Ω(2n/2) queries in the classical setting, but when collisions happen with some hidden periodicity, they can be found with only O(n) queries in the quantum model.
We obtain attacks with very strong implications. First, we show that the most widely used modes of operation for authentication and authenticated encryption (e.g. CBC-MAC, PMAC, GMAC, GCM, and OCB) are completely broken in this security model. Our attacks are also applicable to many CAESAR candidates: CLOC, AEZ, COPA, OTR, POET, OMD, and Minalpher. This is quite surprising compared to the situation with encryption modes: Anand et al. show that standard modes are secure when using a quantum-secure PRF.
Second, we show that slide attacks can also be sped up using Simon's algorithm. This is the first exponential speed up of a classical symmetric cryptanalysis technique in the quantum model.

Wed, 11 May 2016

16:00 - 17:00
C1

Commutator Subgroup and Quasimorphisms

Nicolaus Heuer
(Oxford)
Abstract

Quasimorphisms (QM) of groups to the reals are well studied and are linked to stable commutator length (scl) via Bavard Duality- Theorem. The notion of QM can be generalized to yield maps  between groups such that each QM from one group pulls back to a QM in the other.

We will give both a short overview of features of scl and investigate these generalized QMs with large scale properties of the commutator group. 

Subscribe to