14:15
Mathematical Modelling of Melt Lake Formation On An Ice Shelf
Abstract
The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. These structures have been implicated in crevasse propagation and ice-shelf collapse; the Larsen B ice shelf was observed to have a large amount of melt lakes present on its surface just before its collapse in 2002. Through modelling the transport of heat through the surface of the Larsen C ice shelf, where melt lakes have also been observed, this work aims to provide new insights into the ways in which melt lakes are forming and the effect that meltwater filling crevasses on the ice shelf will have. This will enable an assessment of the role of meltwater in triggering ice-shelf collapse. The Antarctic Peninsula, where Larsen C is situated, has warmed several times the global average over the last century and this ice shelf has been suggested as a candidate for becoming fully saturated with meltwater by the end of the current century. Here we present results of a 1-D mathematical model of heat transfer through an idealized ice shelf. When forced with automatic weather station data from Larsen C, surface melting and the subsequent meltwater accumulation, melt lake development and refreezing are demonstrated through the modelled results. Furthermore, the effect of lateral meltwater transport upon melt lakes and the effect of the lakes upon the surface energy balance are examined. Investigating the role of meltwater in ice-shelf stability is key as collapse can affect ocean circulation and temperature, and cause a loss of habitat. Additionally, it can cause a loss of the buttressing effect that ice shelves can have on their tributary glaciers, thus allowing the glaciers to accelerate, contributing to sea-level rise.
14:15
Benchmark problems for wave propagation in layered media
Abstract
Accurate methods for the first-order advection equation, used for example in tracking contaminants in fluids, usually exploit the theory of characteristics. Such methods are described and contrasted with methods that do not make use of characteristics.
Then the second-order wave equation, in the form of a first-order system, is considered. A review of the one-dimensional theory using solutions of various Riemann problems will be provided. In the special case that the medium has the ‘Goupillaud’ property, that waves take the same time to travel through each layer, one can derive exact solutions even when the medium is spatially heterogeneous. The extension of this method to two-dimensional problems will then be discussed. In two-dimensions it is not apparent that exact solutions can be found, however by exploiting a generalised Goupillaud property, it is possible to calculate approximate solutions of high accuracy, perhaps sufficient to be of benchmark quality. Some two-dimensional simulations, using exact one-dimensional solutions and operator splitting, will be described and a numerical evaluation of accuracy will be given.
14:15
Models of ice sheet dynamics and meltwater lubrication
Abstract
In this talk I will review mathematical models used to describe the dynamics of ice sheets, and highlight some current areas of active research. Melting of glaciers and ice sheets causes an increase in global sea level, and provides many other feedbacks on isostatic adjustment, the dynamics of the ocean, and broader climate patterns. The rate of melting has increased in recent years, but there is still considerable uncertainty over why this is, and whether the increase will continue. Central to these questions is understanding the physics of how the ice intereacts with the atmosphere, the ground on which it rests, and with the ocean at its margins. I will given an overview of the fluid mechanical problems involved and the current state of mathematical/computational modelling. I will focus particularly on the issue of changing lubrication due to water flowing underneath the ice, and discuss how we can use models to rationalise observations of ice speed-up and slow-down.
The effect of domain shape on reaction-diffusion equations
Abstract
I will discuss some reaction-diffusion equations of bistable type motivated by biology and medicine. The aim is to understand the effect of the shape of the domain on propagation or on blocking of advancing waves. I will first describe the motivations of these questions and present a result about the existence of generalized “transition waves”. I will then discuss various geometric conditions that lead to either blocking, or partial propagation, or complete propagation. These questions involve new qualitative results for some non-linear elliptic and parabolic partial differential equations. I report here on joint work with Juliette Bouhours and Guillemette Chapuisat.
On the birational invariance of the BCOV torsion of Calabi-Yau threefold (joint with V. Maillot)
Abstract
Fang, Lu and Yoshikawa conjectured a few years ago that a certain string-theoretic invariant (originally introduced by the physicists M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa) of Calabi-Yau threefolds is a birational invariant. This conjecture can be viewed as a "secondary" analog (in dimension three) of the birational invariance of Hodge numbers of Calabi-Yau varieties established by Batyrev and Kontsevich. Using the arithmetic Riemann-Roch theorem, we prove a weak form of this conjecture.
\zeta(3) in graviton-graviton scattering and the moduli space of CY manifolds
Abstract
I will discuss how \zeta(3) occurs in quantum corrections to the Einstein action, and how this causes \zeta(3) to be seen in the moduli space of CY manifolds. I will also draw attention to the fact that the dependence of the moduli space on \zeta(3) has a p-adic analogue.