Mon, 18 May 2015
11:00
L3

Commutativity and Collinearity: From Diophantus to Pappus via Hilbert

Adrian Rice
Abstract

This talk investigates the discovery of an intriguing and fundamental connection between the famous but apparently unrelated work of two mathematicians of late antiquity, Pappus and Diophantus. This link went unnoticed for well over 1500 years until the publication of two groundbreaking but again ostensibly unrelated works by two German mathematicians at the close of the 19th century. In the interim, mathematics changed out of all recognition, with the creation of numerous new mathematical subjects and disciplines, without which the connection might never have been noticed in the first place. This talk examines the chain of mathematical events that led to the discovery of this remarkable link between two seemingly distinct areas of mathematics, encompassing number theory, finite-dimensional real normed algebras, combinatorial design theory, and projective geometry, and including contributions from mathematicians of all kinds, from the most distinguished to the relatively unknown.

Adrian Rice is Professor of Mathematics at Randolph-Macon College in Ashland, Virginia, where his research focuses on the history of 19th- and early 20th-century mathematics. He is a three-time recipient of the Mathematical Association of America's awards for outstanding expository writing.

Thu, 28 May 2015

14:00 - 15:00
L5

Semi-Langrangian Methods for Monge-Ampère Equations

Dr Max Jensen
(University of Sussex)
Abstract

In this seminar I will present a semi-langrangian discretisation of the Monge-Ampère operator, which is of interest in optimal transport 
and differential geometry as well as in related fields of application.

I will discuss the proof of convergence to viscosity solutions. To address the challenge of uniqueness and convexity we draw upon the classical relationship with Hamilton-Jacobi-Bellman equations, which we extend to the viscosity setting. I will explain that the monotonicity of semi-langrangian schemes implies that they possess large stencils, which in turn requires careful treatment of the boundary conditions.

The contents of the seminar is based on current work with X Feng from the University of Tennessee.

Mon, 08 Jun 2015
15:45
L6

Expanders and K-theory for group C* algebras

Paul Baum
(Pennsylvania State University)
Abstract

*/ /*-->*/ Let G be a locally compact Hausdorff topological group. Examples are Lie groups, p-adic groups, adelic groups, and discrete groups. The BC (Baum-Connes) conjecture proposes an answer to the problem of calculating the K-theory of the convolution C* algebra of G. Validity of the conjecture has implications in several different areas of mathematics --- e.g. Novikov conjecture, Gromov-Lawson-Rosenberg conjecture, Dirac exhaustion of the discrete series, Kadison-Kaplansky conjecture. An expander is a sequence  of finite graphs which is efficiently connected. Any discrete group which contains an expander as a sub-graph of its Cayley graph is a counter-example to  the BC conjecture with coefficients. Such discrete groups have been constructed by Gromov-Arjantseva-Delzant and by Damian Osajda. This talk will indicate how to make a correction in BC with coefficients. There are no known counter-examples to the corrected conjecture, and all previously known confirming examples remain confirming examples.

The Andrew Wiles Building, home to Oxford Mathematics, is a space where mathematics is embedded in the design, from the Penrose Paving to the two large interior crystals. However, it is also a space filled with light, a natural environment for art that works explicitly with light and colour. It is with this in mind that London-based artist Antoni Malinowski was commissioned to paint an art work on the white walls of the entrance area of the Building.

Antoni describes his work as follows:

Thu, 04 Jun 2015

14:00 - 15:00
L5

Polytopic Finite Element Methods

Dr Andrea Cangiani
(Leicester University)
Abstract

Can we extend the FEM to general polytopic, i.e. polygonal and polyhedral, meshes while retaining 
the ease of implementation and computational cost comparable to that of standard FEM? Within this talk, I present two approaches that achieve just  that (and much more): the Virtual Element Method (VEM) and an hp-version discontinuous Galerkin (dG) method.

The Virtual Element spaces are like the usual (polynomial) finite element spaces with the addition of suitable non-polynomial functions. This is far from being a novel idea. The novelty of the VEM approach is that it avoids expensive evaluations of the non-polynomial "virtual" functions by basing all 
computations solely on the method's carefully chosen degrees of freedom. This way we can easily deal 
with complicated element geometries and/or higher continuity requirements (like C1, C2, etc.), while 
maintaining the computational complexity comparable to that of standard finite element computations.

As you might expect, the choice and number of the degrees of freedom depends on such continuity 
requirements. If mesh flexibility is the goal, while one is ready to  give up on global regularity, other approaches can be considered. For instance, dG approaches are naturally suited to deal with polytopic meshes. Here I present an extension of the classical Interior Penalty dG method which achieves optimal rates of convergence on polytopic meshes even under elemental edge/face degeneration. 

The next step is to exploit mesh flexibility in the efficient resolution of problems characterised by 
complicated geometries and solution features, for instance within the framework of automatic FEM 
adaptivity. I shall finally introduce ongoing work in this direction.

Subscribe to