Anabelian Geometry with étale homotopy types
Abstract
Classical anabelian geometry shows that for hyperbolic curves the etale fundamental group encodes the curve provided the base field is sufficiently arithmetic. In higher dimensions it is natural to replace the etale fundamental group by the etale homotopy type. We will report on progress obtained in this direction in a recent joint work with Alexander Schmidt.
**Joint seminar with Logic.
On the Consistency Problem for Quine's New Foundations, NF
Abstract
In 1937 Quine introduced an interesting, rather unusual, set theory called New Foundations - NF for short. Since then the consistency of NF has been a problem that remains open today. But there has been considerable progress in our understanding of the problem. In particular NF was shown, by Specker in 1962, to be equiconsistent with a certain theory, TST^+ of simple types. Moreover Randall Holmes, who has been a long-term investigator of the problem, claims to have solved the problem by showing that TST^+ is indeed consistent. But the working manuscripts available on his web page that describe his possible proofs are not easy to understand - at least not by me.
Examples of quasiminimal classes
Abstract
I will explain the framework of quasiminimal structures and quasiminimal classes, and give some basic examples and open questions. Then I will explain some joint work with Martin Bays in which we have constructed variants of the pseudo-exponential fields (originally due to Boris Zilber) which are quasimininal and discuss progress towards the problem of showing that complex exponentiation is quasiminimal. I will also discuss some joint work with Adam Harris in which we try to build a pseudo-j-function.
Some effective instances of relative Manin-Mumford
Abstract
In a series of recent papers David Masser and Umberto Zannier proved the relative Manin-Mumford conjecture for abelian surfaces, at least when everything is defined over the algebraic numbers. In a further paper with Daniel Bertrand and Anand Pillay they have explained what happens in the semiabelian situation, under the same restriction as above.
At present it is not clear that these results are effective. I'll discuss joint work with Philipp Habegger and Masser and with Harry Schimdt in which we show that certain very special cases can be made effective. For instance, we can effectively compute a bound on the order of a root of unity t such that the point with abscissa 2 is torsion on the Legendre curve with parameter t.
**Note change of room**
Anabelian Geometry with étale homotopy types
Abstract
Classical anabelian geometry shows that for hyperbolic curves the etale fundamental group encodes the curve provided the base field is sufficiently arithmetic. In higher dimensions it is natural to replace the etale fundamental group by the etale homotopy type. We will report on progress obtained in this direction in a recent joint work with Alexander Schmidt.
**Joint seminar with Number Theory. Note unusual time and place**
Commutative 2-algebra, operads and analytic functors
Abstract
Standard commutative algebra is based on the notions of commutative monoid, Abelian group and commutative ring. In recent years, motivations from category theory, algebraic geometry, and mathematical logic led to the development of an area that may be called commutative 2-algebra, in which the notions used in commutative algebra are replaced by their category-theoretic counterparts (e.g. commutative monoids are replaced by symmetric monoidal categories). The aim of this talk is to explain the analogy between standard commutative algebra and commutative 2-algebra, and to outline how this suggests counterparts of basic aspects of algebraic geometry. In particular, I will describe some joint work with Andre’ Joyal on operads and analytic functors in this context.
Free actions of free groups on countable structures and property (T)
Abstract
In joint work with Todor Tsankov, we show that the automorphism groups of countable, omega-categorical structures have Kazhdan's property (T). The proof uses Tsankov's work on the unitary representations of these groups, together with a construction of a particular free subgroup of the automorphism group.
Strong type theories and their set-theoretic incarnations
Abstract
There is a tight fit between type theories à la Martin-Löf and constructive set theories such as Constructive Zermelo-Fraenkel set theory, CZF, and its extension as well as classical Kripke-Platek set theory and extensions thereof. The technology for determining their (exact) proof-theoretic strength was developed in the 1990s. The situation is rather different when it comes to type theories (with universes) having the impredicative type of propositions Prop from the Calculus of Constructions that features in some powerful proof assistants. Aczel's sets-as-types interpretation into these type theories gives rise to rather unusual set-theoretic axioms: negative power set and negative separation. But it is not known how to determine the proof-theoretic strengths of intuitionistic set theories with such axioms via familiar classical set theories (though it is not difficult to see that ZFC plus infinitely many inaccessibles provides an upper bound). The first part of the talk will be a survey of known results from this area. The second part will be concerned with the rather special computational and proof-theoretic behavior of such theories.
Permutation groups, primitivity and derangements
Abstract
Let G be a transitive permutation group. If G is finite, then a classical theorem of Jordan implies the existence of fixed-point-free elements, which we call derangements. This result has some interesting and unexpected applications, and it leads to several natural problems on the abundance and order of derangements that have been the focus of recent research. In this talk, I will discuss some of these related problems, and I will report on recent joint work with Hung Tong-Viet on primitive permutation groups with extremal derangement properties.