Thu, 11 Jun 2015

16:00 - 17:00
L6

Moduli stacks of potentially Barsotti-Tate Galois representations

Toby Gee
(Imperial College)
Abstract

I will discuss joint work with Ana Caraiani, Matthew Emerton and David Savitt, in which we construct moduli stacks of two-dimensional potentially Barsotti-Tate Galois representations, and study the relationship of their geometry to the weight part of Serre's conjecture.

Fri, 20 Mar 2015

10:00 - 11:00
L6

Saint-Gobain

Paul Leplay
Abstract

For this workshop, we have identified two subject of interest for us in the field of particle technology, one the wet granulation is a size enlargement process of converting small-diameter solid particles (typically powders) into larger-diameter agglomerates to generate a specific size, the other one the mechanical centrifugal air classifier is employed when the particle size that you need to separate is too fine to screen.

Thu, 04 Jun 2015

16:00 - 17:00
L5

Bounded intervals containing many primes

Roger Baker
(Brigham Young University)
Abstract

I describe joint work with Alastair Irving in which we improve a result of
D.H.J. Polymath on the length of intervals in $[N,2N]$ that can be shown to
contain $m$ primes. Here $m$ should be thought of as large but fixed, while $N$
tends to infinity.
The Harman sieve is the key to the improvement. The preprint will be
available on the Math ArXiv before the date of the talk.

Thu, 07 May 2015

16:00 - 17:00
L5

Heuristics for distributions of Arakelov class groups

Alex Bartel
(University of Warwick)
Abstract

The Cohen-Lenstra heuristics, postulated in the early 80s, conceptually explained numerous phenomena in the behaviour of ideal class groups of number fields that had puzzled mathematicians for decades, by proposing a probabilistic model: the probability that the class group of an imaginary quadratic field is isomorphic to a given group $A$ is inverse proportional to $\#\text{Aut}(A)$. This is a very natural model for random algebraic objects. But the probability weights for more general number fields, while agreeing well with experiments, look rather mysterious. I will explain how to recover the original heuristic in a very conceptual way by phrasing it in terms of Arakelov class groups instead. The main difficulty that one needs to overcome is that Arakelov class groups typically have infinitely many automorphisms. We build up a theory of commensurability of modules, of groups, and of rings, in order to remove this obstacle. This is joint work with Hendrik Lenstra.

The fifth annual conference bringing Oxford and Cambridge groups together to discuss their PDE related research with additional talks by external speakers.
Tue, 03 Mar 2015
14:30

Tiling the grid with arbitrary tiles

Vytautas Gruslys
(University of Cambridge)
Abstract

Suppose that we have a tile $T$ in say $\mathbb{Z}^2$, meaning a finite subset of $\mathbb{Z}^2$. It may or may not be the case that $T$ tiles $\mathbb{Z}^2$, in the sense that $\mathbb{Z}^2$ can be partitioned into copies of $T$. But is there always some higher dimension $\mathbb{Z}^d$ that can be tiled with copies of $T$? We prove that this is the case: for any tile in $\mathbb{Z}^2$ (or in $\mathbb{Z}^n$, any $n$) there is a $d$ such that $\mathbb{Z}^d$ can be tiled with copies of it. This proves a conjecture of Chalcraft.

Subscribe to