Wed, 12 Nov 2014

16:00 - 17:00
C1

The gap in the isoperimetric spectrum

Giles Gardam
(Oxford)
Abstract

The Dehn function of a group measures the complexity of the group's word problem, being the upper bound on the number of relations from a group presentation required to prove that a word in the generators represents the identity element. The Filling Theorem which was first stated by Gromov connects this to the isoperimetric functions of Riemannian manifolds. In this talk, we will see the classification of hyperbolic groups as those with a linear Dehn function, and give Bowditch's proof that a subquadratic isoperimetric inequality implies a linear one (which gives the only gap in the "isoperimetric spectrum" of exponents of polynomial Dehn functions).

Wed, 05 Nov 2014

16:00 - 17:00
C1

The Surface Subgroup Theorem

Alexander Margolis
(Oxford)
Abstract

We will give an outline of the proof by Kahn and Markovic who showed that a closed hyperbolic 3-manifold $\textbf{M}$ contains a closed $\pi_1$-injective surface. This is done using exponential mixing to find many pairs of pants in $\textbf{M}$, which can then be glued together to form a suitable surface. This answers a long standing conjecture of Waldhausen and is a key ingredient in the proof of the Virtual Haken Theorem.

Wed, 29 Oct 2014

16:00 - 17:00
C1

Vertex cuts separating the ends of a graph

Gareth Wilkes
(Oxford)
Abstract

Dinits, Karzanov and Lomonosov showed that the minimal edge cuts of a finite graph have the structure of a cactus, a tree-like graph constructed from cycles. Evangelidou and Papasoglu extended this to minimal cuts separating the ends of an infinite graph. In this talk we will discuss a similar structure theorem for minimal vertex cuts separating the ends of a graph; these can be encoded by a succulent, a mild generalization of a cactus that is still tree-like.

Subscribe to