Tue, 12 Nov 2024

14:00 - 15:00
L4

On forbidden configurations in point-line incidence graphs

Nora Frankl
(Open University)
Abstract

The celebrated Szemeredi-Trotter theorem states that the maximum number of incidences between $n$ points and $n$ lines in the plane is $\mathcal{O}(n^{4/3})$, which is asymptotically tight.

Solymosi conjectured that this bound drops to $o(n^{4/3})$ if we exclude subconfigurations isomorphic to any fixed point-line configuration. We describe a construction disproving this conjecture. On the other hand, we prove new upper bounds on the number of incidences for configurations that avoid certain subconfigurations. Joint work with Martin Balko.

Mon, 04 Nov 2024
16:00
C3

Approximating Primes

Lasse Grimmelt
(University of Oxford)
Abstract

A successful strategy to handle problems involving primes is to approximate them by a more 'simple' function. Two aspects need to be balanced. On the one hand, the approximant should be simple enough so that the considered problem can be solved for it. On the other hand, it needs to be close enough to the primes in order to make it an admissible to replacement. In this talk I will present how one can construct general approximants in the context of the Circle Method and will use this to give a different perspective on Goldbach type applications.

Rapid modulation of striatal cholinergic interneurons and dopamine release by satellite astrocytes
Stedehouder, J Roberts, B Raina, S Bossi, S Liu, A Doig, N McGerty, K Magill, P Parkkinen, L Cragg, S Nature Communications volume 15 issue 1 (19 Nov 2024)
Fri, 06 Dec 2024
12:00
L2

Combinatorial proof of a Non-Renormalization theorem

Paul-Hermann Balduf
(Oxford)
Abstract

In "Higher Operations in Perturbation Theory", Gaiotto, Kulp, and Wu discussed Feynman integrals that control certain deformations in quantum field theory. The corresponding integrands are differential forms in Schwinger parameters. Specifically, the integrand $\alpha$ is associated to a single topological direction of the theory.
I will show how the combinatorial properties of graph polynomials lead to a relatively simple, explicit formula for $\alpha$, that can be evaluated quickly with a computer. This is interesting for two reasons. Firstly, knowing the explicit formula leads to an elementary proof of the fact that $\alpha$ squares to zero, which asserts the absence of quantum corrections in topological field theories of two (or more) dimensions, known as Kontsevich's formality theorem. Secondly, the underlying constructions and proofs are not intrinsically limited to topological theories. In this sense, they serve as a particularly instructive example for simplifications that can occur in Feynman integrals with numerators.

Fri, 13 Dec 2024
12:00
L4

Asymptotic Higher Spin Symmetries in Gravity.

Nicolas Cresto
(Perimeter Institute)
Abstract

 I will first give a short review of the concepts of Asymptotically Flat Spacetimes, IR triangle and Noether's theorems. I will then present what Asymptotic Higher Spin Symmetries are and how they were introduced as a candidate for an approximate symmetry of General Relativity and the S-matrix. Next, I'll move on to the recent developments of establishing these symmetries as Noether symmetries and describing how they are canonically and non-linearly realized on the asymptotic gravitational phase space. I will discuss how the introduction of dual equations of motion encapsulates the non-perturbativity of the analysis. Finally I'll emphasize the relation to twistor, especially with 2407.04028. Based on 2409.12178 and 2410.15219

Fri, 22 Nov 2024
12:00
L2

C for Carroll

Saikat Mondal
(Kanpur)
Abstract

Physics beyond relativistic invariance and without Lorentz (or Poincaré) symmetry and the geometry underlying these non-Lorentzian structures have become very fashionable of late. This is primarily due to the discovery of uses of non-Lorentzian structures in various branches of physics, including condensed matter physics, classical and quantum gravity, fluid dynamics, cosmology, etc. In this talk, I will be talking about one such theory - Carrollian theory, where the Carroll group replaces the Poincare group as the symmetry group of interest. Interestingly, any null hypersurface is a Carroll manifold and the Killing vectors on the null manifold generate Carroll algebra. Historically, Carroll group was first obtained from the Poincaré group via a contraction by taking the speed of light going to zero limit as a “degenerate cousin of the Poincaré group”.  I will shed some light on Carrollian fermions, i.e. fermions defined on generic null surfaces. Due to the degenerate nature of the Carroll manifold, there exist two distinct Carroll Clifford algebras and, correspondingly, two different Carroll fermionic theories. I will discuss them in detail. Then, I will show some examples; when the dispersion relation becomes trivial, i.e. energy bands flatten out, there can be a possibility of the emergence of Carroll symmetry. 

Fri, 08 Nov 2024
12:00
L6

Carroll approach to flat space holography in 3d

Daniel Grumiller
(TU Vienna)
Abstract

Introduction to flat space holography in three dimensions and Carrollian CFT2, with selected results on correlation functions, thermal entropy, entanglement entropy and an outlook to Bondi news in 3d.

On the non-perturbative bulk Hilbert space of JT gravity
Iliesiu, L Levine, A Lin, H Maxfield, H Mezei, M Journal of High Energy Physics volume 2024 issue 10 (29 Oct 2024)
Subscribe to