Mathematrix: Meet and Greet
Abstract
Come along for free Pizza and to hear about the Mathematrix events this term.
Come along for free Pizza and to hear about the Mathematrix events this term.
Rota’s Alternierende Verfahren theorem in classical probability theory, which examines the convergence of iterates of measure preserving Markov operators, relies on a dilation technique. In the noncommutative setting of von Neumann algebras, this idea leads to the notion of absolute dilation.
In this talk, we explore when a Fourier multiplier on a group von Neumann algebra is absolutely dilatable. We discuss conditions that guarantee absolute dilatability and present an explicit counterexample—a Fourier multiplier that does not satisfy this property. This talk is based on a joint work with Christian Le Merdy.
A countable group G is said to be W*-superrigid if G can be entirely recovered from its ambient group von Neumann algebra L(G). I will present a series of joint works with Milan Donvil in which we establish new degrees of W*-superrigidity: isomorphisms may be replaced by virtual isomorphisms expressed by finite index bimodules, the group von Neumann algebra may be twisted by a 2-cocycle, the group G might have infinite center, or we may enlarge the category of discrete groups to the broader class of discrete quantum groups.
A non-local game involves two non-communicating players who cooperatively play to give winning pairs of answers to questions posed by an external referee. Non-local games provide a convenient framework for exhibiting quantum supremacy in accomplishing certain tasks and have become increasingly useful in quantum information theory, mathematics, computer science, and physics in recent years. Within mathematics, non-local games have deep connections with the field of operator algebras, group theory, graph theory, and combinatorics. In this talk, I will provide an introduction to the theory of non-local games and quantum correlation classes and show their connections to different branches of mathematics. We will discuss how entanglement-assisted strategies for non-local games may be interpreted and studied using tools from operator algebras, group theory, and combinatorics. I will then present a general framework of non-local games involving quantum questions and answers.