Mon, 04 Nov 2024
16:30
L4

Possible div-curl estimates on the 5-dimensional Cartan group

F Tripaldi
(Leeds University)
Abstract

On arbitrary Carnot groups, the only hypoelliptic Hodge-Laplacians on forms that have been introduced are 0-order pseudodifferential operators constructed using the Rumin complex.  However, to address questions where one needs sharp estimates, this 0-order operator is not suitable. Indeed, this is a rather difficult problem to tackle in full generality, the main issue being that the Rumin exterior differential is not homogeneous on arbitrary Carnot groups. In this talk, I will focus on the specific example of the free Carnot group of step 3 with 2 generators, where it is possible to introduce different hypoelliptic Hodge-Laplacians on forms. Such Laplacians can be used to obtain sharp div-curl type inequalities akin to those considered by Bourgain & Brezis and Lanzani & Stein for the de Rham complex, or their subelliptic counterparts obtained by Baldi, Franchi & Pansu for the Rumin complex on Heisenberg groups

Thu, 24 Oct 2024
17:00
L3

Generic central sequence properties in II$_1$ factors

Jenny Pi
(University of Oxford)
Abstract

Von Neumann algebras which are not matrix algebras, yet still possess a unique trace, form a basic class called II$_1$ factors. The set of asymptotically commuting elements (or, the relative commutant of the algebra within its own ultrapower), dubbed the central sequence algebra, can take many different forms. In this talk, we discuss an elementary class of II$_1$ factors whose central sequence algebra is again a II$_1$ factor. We show that the class of infinitely generic II$_1$ factors possess this property, and ask some related questions about properties of other existentially closed II$_1$ factors. This is based on joint work with Isaac Goldbring, David Jekel, and Srivatsav Kunnawalkam Elayavalli.

Thu, 17 Oct 2024
17:00
L3

Definable convolution and idempotent Keisler measures

Kyle Gannon (Peking University)
Abstract

Given a locally compact topological group, there is a correspondence between idempotent probability measures and compact subgroups. An analogue of this correspondence continues into the model theoretic setting. In particular, if G is a stable group, then there is a one-to-one correspondence between idempotent Keisler measures and type-definable subgroups. The proof of this theorem relies heavily on the theory of local ranks in stability theory. Recently, we have been able to extend a version of this correspondence to the abelian setting. Here, we prove that fim idempotent Keisler measures correspond to fim subgroups. These results rely on recent work of Conant, Hanson and myself connecting generically stable measures to generically stable types over the randomization. This is joint work with Artem Chernikov and Krzysztof Krupinski.

Rapidly yawing spheroids in viscous shear flow: Emergent loss of symmetry
Dalwadi, M (02 Sep 2024)
Thu, 07 Nov 2024
16:00
L3

E-functions and their roots

Peter Jossen
(King's College London)
Abstract
E-functions are a special class of entire function given by power series with algebraic coefficients, particular examples of which are the exponential function or Bessel functions. They were introduced by Siegel in the 1930's.
 
While special values of E-functions are relatively well understood, their roots remain mysterious in many ways. I will explain how roots of E-functions are distributed in the complex plane (essentially a Theorem of Pólya), and discuss a couple of related questions and conjectures. From the roots of an E-function one may also fabricate a "spectral" zeta function, which turns out to have some interesting properties.
The role of adsorbent microstructure and its packing arrangement in optimising the performance of an adsorption column
Valverde, A Griffiths, I Discover Chemical Engineering volume 4 issue 1 (14 Sep 2024)
Introduction
Beeley, P Hollings, C Beyond the Learned Academy 1-26 (05 Jan 2024)
Mon, 02 Dec 2024
16:30
L4

Introducing various notions of distances between space-times

Anna Sakovich
(University of Uppsala)
Abstract

I will introduce the class of causally-null-compactifiable spacetimes that can be canonically converted into compact timed-metric spaces using the cosmological time function of Andersson-Galloway-Howard and the null distance of Sormani-Vega. This class of space-times includes future developments of compact initial data sets and regions exhausting asymptotically flat space-times. I will discuss various intrinsic notions of distance between such space-times and show that some of them are definite in the sense that they are equal to zero if and only if there is a time-oriented Lorentzian isometry between the space-times. These definite distances allow us to define notions of convergence of space-times to limit space-times that are not necessarily smoothThis is joint work with Christina Sormani.

Mon, 28 Oct 2024
16:30
L4

Lipschitz Regularity of harmonic maps from the Heisenberg group into CAT(0) spaces

Renan Assimos
(Leibniz Universität Hannover)
Abstract

We prove the local Lipschitz continuity of energy minimizing harmonic maps between singular spaces, more specifically from the n-dimensional Heisenberg group into CAT(0) spaces. The present result paves the way for a general regularity theory of sub-elliptic harmonic maps, providing a versatile approach applicable beyond the Heisenberg group.  Joint work with Yaoting Gui and Jürgen Jost.

The time between symptom onset and various clinical outcomes: a statistical analysis of MERS-CoV patients in Saudi Arabia
Althobaity, Y Alkhudaydi, M Hill, E Thompson, R Tildesley, M Royal Society Open Science volume 11 issue 11 (20 Nov 2024)
Subscribe to